Effects of Biochar on Soil Properties and Tomato Growth (original) (raw)

Effects of Biochar on the Growth and Development of Tomato Seedlings and on the Response of Tomato Plants to the Infection of Systemic Viral Agents

Frontiers in Microbiology

Biochar is a rich carbon product obtained by pyrolysis of biomass under a limited supply of oxygen. It is composed mainly of aromatic molecules, but its agronomic value is hard to evaluate and difficult to predict due to its great variable characteristics depending on the type of starting biomass and the conditions of pyrolysis. Anyway, it could be used as soil amendment because it increases the soil fertility of acidic soils, increases the agricultural productivity, and seems to provide protection against some foliar and soilborne diseases. In this study, the effects of biochar, obtained from olive pruning, have been evaluated on tomato seedlings growth and on their response to systemic agents' infection alone or added with beneficial microorganisms (Bacillus spp. and Trichoderma spp.). First, experimental data showed that biochar seems to promote the development of the tomato seedlings, especially at concentrations ranging from 1 to 20% (w/w with peat) without showing any anti...

Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties

Biochar - An Imperative Amendment for Soil and the Environment, 2019

Soil is the most important source and an abode for many nutrients and microflora. Due to rapid depletion of agricultural areas and soil quality by means of ever-increasing population and an excessive addition of chemical fertilizers, a rehabilitated attention is a need of the hour to maintain sustainable approaches in agricultural crop production. Biochar is the solid, carbon-rich material obtained by pyrolysis using different biomasses. It has been widely documented in previous studies that, the crop growth and yield can be increased by using biochar. This chapter exclusively summarizes the properties of biochar, its interaction with soil microflora, and its role in plant growth promotion when added to the soil.

Effect of Biochar Application on Morpho-Physiological Traits, Yield, and Water Use Efficiency of Tomato Crop Under Water Quality and Deficit

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Therefore, the experiment was conducted to evaluate the effects of biochar application on the morpho-physiological traits and yield of tomatoes under combined salinity and drought stress into greenhouses. There were 16 treatments consist two water quality fresh and saline (0.9 and 2.3 dS m-1), three deficit irrigation levels (DI) 80, 60, and 40% addition 100% of ETc, and biochar application by rate 5% (BC5%) (w/w) and untreated soil (BC0%). The results indicated that the salinity and water deficit negatively affected morphological, physiological, and yield traits. In contrast, the application of biochar improved all traits. The interaction between biochar and saline water leads to decreased vegetative growth indices, leaf gas exc...

Potential Use of Biochar as an Amendment to Improve Soil Fertility and Tomato and Bell Pepper Growth Performance Under Arid Conditions

Journal of Soil Science and Plant Nutrition , 2021

The aim of this study was to assess the potential use of biochar derived from olive pruning to enhance soil properties and tomato and bell pepper plant growth and yield performance in arid environments. Biochar was prepared from olive tree–pruning residues. The biochar was applied to field experiments of tomato and bell pepper plants at five application rates (0, 8, 16, 30, and 40 t ha−1). Relative water content (RWC), leaf chlorophyll, and leaf nutrient (nitrogen (N), phosphorus (P), and potassium (K)) contents were measured. The total yield was determined for each treatment. Fruit nutrient contents were determined in selected fruit samples. Soil samples were collected from each treatment at the middle and end of the experiment for physical and chemical analysis. All experiments were conducted in triplicate. The application of biochar at rates of 8 and 16 t ha−1 enhanced tomato and bell pepper growth; however, application of 30 and 40 t ha−1 adversely affected tomato and bell pepper growth. Nutrient analysis showed that N, P, and K concentrations in leaves and fruits were higher in plants treated with 8 and 16 t ha−1 of biochar than in biochar treatments of 30 and 40 t ha−1. Higher biochar application rates increased soil pH and EC by 1.4% and 12.3% (8 t ha−1) to 7.3% and 107.8% (40 t ha−1), respectively. A biochar application rate of 8 t ha−1 is recommended as an optimal rate to enhance soil fertility for tomato and bell pepper production systems in arid environments.

Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato

Sustainability, 2023

Biochar increases crop yield, soil reliability, and carbon sequestration. This study examined how biochar affected soil properties and tomato yield in saline soil. The experiment was conducted in areas surrounding Khulna Agricultural University and in farmers' fields close to Khulna, Bangladesh. The experiment's layout was a randomized complete block design (RCBD). Tomato cultivation with eight treatments and three replications used biochar with the recommended fertilizer dose (RFD). Using biochar in saline soil significantly influenced tomato growth and yield character. Days after planting, plant height was dramatically impacted by various biochar treatment levels. The height of tomato plants ranged from 65.38 to 46.37 cm, yielding 49.23 tons per hectare. The experiments used biochar treatments to grow more tomatoes than traditional fertilizers and a control treatment. Compared with control treatments, biochar also changed the properties of salty soil after it was harvested. The soil's pH is 6.51 and its particle density is highest at 2.65. The control treatments had the highest EC value, which was 2800, and the biochar application treatments had the lowest EC values. At 100 s/cm, the EC value made the soil 0.6 ppt saltier in the control treatment without biochar, but adding biochar made the soil 0.1 ppt less salty. The percentages of carbon, nitrogen, and organic matter were also the highest that they had been (1.88%, 2.58%, and 1.073, respectively). The phosphorus concentration in the soil was 19.47 g/g after harvesting. The majority of K and S values used to treat salty soils are interchangeable. Significant changes in tomato growth, yield, and soil properties occurred when biochar was combined with recommended fertilizer doses and applied to saline soil for tomato cultivation.

Vine Pruning-Derived Biochar for Agronomic Benefits

Agronomy

The agronomic benefits of biochar (BC) prepared by slow pyrolysis of vine pruning residues, which are produced in large quantities in Romania, were evaluated. Three soil types, i.e., slightly alkaline fluvisol (S1), slightly acidic chernozem (S2), and strongly acidic luvisol (S3), with mean values of pH of 7.99, 6.26, and 5.40, were amended with BC at a volumetric ratio between BC and soil of 20/80. A greenhouse experiment was performed for 109 days to assess the effects of BC amendment on bell pepper growth. The following treatments were applied: foliar fertilizer, BC, BC + foliar fertilizer (using two concentrations of foliar fertilizer solution), and a control. Strongly alkaline BC (pH of 9.89 ± 0.01) had a significant positive effect on the growth performance of bell pepper plants sown in the strongly acidic soil S3. The mean values of height, collar diameter, number of leaves, and root volume of plants grown in BC-amended soil S3 without foliar treatment were significantly high...

Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil

Sustainability, 2021

Biochar amendments are widely recognized to improve crop productivity and soil biogeochemical quality, however, their effects on vegetable crops are less studied. This pot study investigated the effects of cotton stick, corncob and rice straw biochars alone and with farmyard manure (FYM) on tomato growth, soil physico–chemical and biological characteristics, soil organic carbon (SOC) content and amount of soil nutrients under recommended mineral fertilizer conditions in a nutrient-depleted alkaline soil. Biochars were applied at 0, 1.5 and 3% (w/w, basis) rates and FYM was added at 0 and 30 t ha−1 rates. Biochars were developed at 450 °C pyrolysis temperature and varied in total organic C, nitrogen (N), phosphorus (P) and potassium (K) contents. The results showed that biochars, their amounts and FYM significantly improved tomato growth which varied strongly among the biochar types, amounts and FYM. With FYM, the addition of 3% corncob biochar resulted in the highest total chlorophy...

Effects of tomato harvest residue derived biochars obtained from different pyrolysis temperature and duration on plant growth and nutrient concentrations of corn

This study is aimed to investigate the effects of different biochars obtained from tomato harvest residues (THR) on the growth, nutrient concentrations and nutrient uptakes of corn plant. For this purpose, biochars were produced using THR, using a pyrolyser at temperature of 300, 400, 500, 600, and 700 ºC with application duration of 40, 80, 120, and 240 minutes. THR had C and N content of 22.12 % and 2.00 %, respectively. Biochars obtained at five application temperatures and four application durations were applied with the rates of 10 and 40 t•ha-1. The experiment was conducted in a greenhouse. After 2 months growth period, the plants were harvested above ground of the soil. Harvested plants were washed and dry weighted and mineral nutrient concentrations of the plants were determined. The results showed that low application rate (10 t•ha-1) of biochar obtained at 300-600 ºC and at longer duration increased the plant growth. However, there is no systematic effect of different biochar applications on nutrient concentrations of corn plant generally.

Biochar enhances yield and quality of tomato under reduced irrigation

Biochar is an amendment that can be used for enhancing soil water storage which may increase crop productivity. The objective of this study was to investigate the effects of biochar on physiology, yield and quality of tomato under different irrigation regimes. From early flowering to fruit maturity stages, the plants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation (PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot water holding capacity while in DI and PRD, 70% of FI was irrigated on either the whole or one side of the pots, respectively. In PRD, irrigation was switched between sides when the soil water content of the dry side decreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DI and PRD, which consequently improved physiology, yield, and quality of tomato as compared with the non-biochar control. However, leaf N content and chlorophyll content index (CCI) were decreased significantly in biochar treated plants. Furthermore, given a same irrigation volume, PRD offered advantages over DI in improving water use efficiency, leaf relative water content, membrane stability index and fruit yield. Overall, fruit quality was improved under reduced irrigation (i.e. DI and PRD) as compared with FI. It was concluded that incorporation of biochar under DI and particularly, PRD might be a novel approach to improve water productivity and quality of tomato.

Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium

Horticulture, Environment, and Biotechnology , 2019

Biochar has been reported to improve soil fertility and growing medium performance. However, the role that biochar plays in plant nutrition is not completely understood, especially in plants grown under nutritional stress. Recent research indicates that the addition of biochar increases produce yield of tomato grown under salinity stress and drought; however, little information is available about the effects of biochar on fruit quality parameters. The use of biochar as a growth substrate in an intensive greenhouse cropping system may have the capacity of replacing non-renewable and less sustainable growing media like peat and in addition being a strategy to optimize chemical fertilisation. This work aimed to investigate the effects of biochar, as a potential candidate to replace peat, on tomato growing in soilless conditions under nutritional stress. Plant biomass accumulation, leaf fluorescence and chlorophyll, fruit yield and fruit quality parameters were measured as performance indicators. Biochar increased the green biomass, but it did not significantly affect yield or most quality parameters, apart from potassium content in ripe fruits. These results suggest that biochar has great potential as a peat alternative material and plant growth promoter, but no ability to improve tomato yield, under nutritional stress