Physiological and proteomic responses of two contrastingPopulus cathayanapopulations to drought stress (original) (raw)

Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions

Plant Physiology, 2006

The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stressrelated compounds, loss of CO 2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.

Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions

PLANT PHYSIOLOGY, 2006

The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stressrelated compounds, loss of CO 2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.

The genetics and genomics of the drought response in Populus

The Plant …, 2006

The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F 2 ) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F 2 population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.

Poplar under drought: Comparison of leaf and cambial proteomic responses

Journal of Proteomics, 2011

The forest ecosystem is of particular importance from an economic and ecological perspective. However, the stress physiology of trees, perennial and woody plants, is far from being fully understood. For that purpose, poplar plants were exposed to drought; the plants exhibited commonly reported drought stress traits in the different plant tissues.Leafy rooted cuttings of poplar were investigated through a proteomic approach in order to compare the water constraint response of two plant tissues, namely leaf and cambium. Sampling was realized during the drought period at 2 time points with increased drought intensity and 7 days after rewatering.Our data show that there is a difference in the moment of response to the water constraint between the two tissues, cambium being affected later than leaves. In leaves, drought induced a decrease in rubisco content, and an increase in the abundance of light harvesting complex proteins as well as changes in membrane-related proteins. In the cambial tissue, the salient proteome pattern change was the decrease of multiple proteins identified as bark storage proteins. After rewatering, almost all changes in cambial proteome disappeared whereas a significant number of leaf proteins appeared to be differentially regulated only during the recovery from drought.Poplar plants exposed to drought exhibit contrasting proteomic response in leaf and cambium. Seven days after rewatering leaf proteome remained altered while cambial proteome showed few differences compared to control.

Unravelling the molecular cues of plant adaptation or survival to water deficit

ressources.ciheam.org

To cite th is article / Pou r citer cet article ravellin g th e molecu lar cu es of plan t adaptation or su rvival to water deficit. In : Santini A. (ed.), Lamaddalena N. (ed.), Severino G. (ed.), Palladino M. (ed.). Irrigation in Mediterranean agriculture: challenges and innovation for the next dec ades . Bari : CIHEAM, 2008. p. 85-91 (Options Méditerranéennes : Série A. Séminaires

Phytobiome and transcriptional adaptation of Populus deltoides to acute progressive drought and cyclic drought

Phytobiomes Journal

Plant drought stress causes systematic changes to photosynthesis, metabolism, growth, and potentially the phytobiome. Additionally, drought affects plants in both a species-specific and water-deficit-driven manner, causing the response to drought to be dependent both on how drought is being experienced and on any adaptation to prior drought exposure. Thus, understanding the effect of drought on plants requires assessing drought response in multiple conditions, such as progressive acute drought and recurrent cyclic drought, and at different levels of severity. In this study, we have utilized RNA sequencing to identify changes to the plant transcriptome and the phytobiome during both acute progressive drought and cyclic drought at multiple severities. Co-analysis of the plant and phytobiome, utilizing the same RNAseq data, allows for the identification of novel associations that would not be possible otherwise. We have identified that the drought response ranges from increased transcr...

Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves

PloS one, 2018

Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed...

Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins

Proteomics, 2006

Poplar is the first forest tree genome to be decoded. As an initial step to the comprehensive analysis of poplar proteome, we described reference 2-D-maps for eight tissues/organs of the plant, and the functional characterization of some proteins. A total of 398 proteins were excised from the gels. About 91.2% were identified by nanospray LC-MS/MS, based on comparison with 260 000 Populus sp. ESTs. In comparison, reliable PMFs were obtained for only 51% of the spots by MALDI-TOF-MS, from which 43% (83 spots) positively matched gene models of the Populus trichocarpa genome sequence. Among these 83 spots, 58% matched with the same proteins as identified by LC-MS/MS, 21.7% with unknown function proteins and 19.3% with completely different functions. In the second phase, we studied the effect of drought stress on poplar root and leaf proteomes. The function of up-and down-regulated proteins is discussed with respect to the physiological response of the plants and compared with transcriptomic data. Some important clues regarding the way poplar copes with water deficit were revealed.

Drought tolerance of two black poplar ( Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence

Plant Cell and Environment, 2009

Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.

Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes

BMC Genomics, 2010

Background: Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results: Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.