Article Increased Course Structure Improves Performance in Introductory Biology (original) (raw)
Related papers
Increased Course Structure Improves Performance in Introductory Biology
Cell Biology Education, 2011
We tested the hypothesis that highly structured course designs, which implement reading quizzes and/or extensive in-class active-learning activities and weekly practice exams, can lower failure rates in an introductory biology course for majors, compared with low-structure course designs that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence with new assessments called the Weighted Bloom's Index and Predicted Exam Score, and 3) student equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from reading quizzes, clicker questions, and other “practice” assessments in highly structured courses inflate grades and confound comparisons with low-structure course designs. We found no evidence that points from active-learning exercises inflate grades or reduce the impact of exams on final grades. When we con...
Prescribed Active Learning Increases Performance in Introductory Biology
Cbe-life Sciences Education, 2007
We tested five course designs that varied in the structure of daily and weekly active-learning exercises in an attempt to lower the traditionally high failure rate in a gateway course for biology majors. Students were given daily multiple-choice questions and answered with electronic response devices (clickers) or cards. Card responses were ungraded; clicker responses were graded for right/wrong answers or participation. Weekly practice exams were done as an individual or as part of a study group. Compared with previous versions of the same course taught by the same instructor, students in the new course designs performed better: There were significantly lower failure rates, higher total exam points, and higher scores on an identical midterm. Attendance was higher in the clicker versus cards section; attendance and course grade were positively correlated. Students did better on clicker questions if they were graded for right/wrong answers versus participation, although this improvement did not translate into increased scores on exams. In this course, achievement increases when students get regular practice via prescribed (graded) active-learning exercises.
Article Prescribed Active Learning Increases Performance in Introductory Biology
2006
We tested five course designs that varied in the structure of daily and weekly active-learning exercises in an attempt to lower the traditionally high failure rate in a gateway course for biology majors. Students were given daily multiple-choice questions and answered with electronic response devices (clickers) or cards. Card responses were ungraded; clicker responses were graded for right/wrong answers or participation. Weekly practice exams were done as an individual or as part of a study group. Compared with previous versions of the same course taught by the same instructor, students in the new course designs performed better: There were significantly lower failure rates, higher total exam points, and higher scores on an identical midterm. Attendance was higher in the clicker versus cards section; attendance and course grade were positively correlated. Students did better on clicker questions if they were graded for right/wrong answers versus participation, although this improvem...
Education Sciences
Active learning improves undergraduate STEM course comprehension; however, student comprehension using different active learning methods and student perception of active learning have not been fully explored. We analyze ten semesters (six years) of an undergraduate biology course (honors and non-honors sections) to understand student comprehension and student satisfaction using a variety of active learning methods. First, we describe and introduce active learning subtypes. Second, we explore the efficacy of active learning subtypes. Third, we compare student comprehension between course material taught with active learning or lecturing within a course. Finally, we determine student satisfaction with active learning using a survey. We divide active learning into five subtypes based on established learning taxonomies and student engagement. We explore subtype comprehension efficacy (median % correct) compared to lecture learning (median 92% correct): Recognition (100%), Reflective (10...
2014
The objectives of this study were to investigate the alignment of exam questions with course learning outcomes in a first year biology majors course, to examine gaps and overlaps in assessment of content amongst the sections of the course, and to use this information to provide feedback to the teaching team to further improve the course. Our ultimate goal was to provide students with learning outcomes that would clearly indicate the content and the level at which they would be expected to learn the content for this course, regardless of the section in which they were registered. We took an evidence-based approach to course evaluation and employed the Blooming Biology Tool to compare the learning outcomes and the exam questions of the course, investigating whether the cognitive skill level of each learning outcome as written matched the level at which it was assessed. We identified misalignments and recommended revising the learning outcomes to better reflect the intended level of le...
Cell Biology Education, 2013
We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p < 0.001);. The higher-achieving students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning.
Evidence-based teaching practices correlate with increased exam performance in biology
PLOS ONE, 2021
Evidence-based teaching practices are associated with improved student academic performance. However, these practices encompass a wide range of activities and determining which type, intensity or duration of activity is effective at improving student exam performance has been elusive. To address this shortcoming, we used a previously validated classroom observation tool, Practical Observation Rubric to Assess Active Learning (PORTAAL) to measure the presence, intensity, and duration of evidence-based teaching practices in a retrospective study of upper and lower division biology courses. We determined the cognitive challenge of exams by categorizing all exam questions obtained from the courses using Bloom’s Taxonomy of Cognitive Domains. We used structural equation modeling to correlate the PORTAAL practices with exam performance while controlling for cognitive challenge of exams, students’ GPA at start of the term, and students’ demographic factors. Small group activities, randomly...
The transition from secondary to higher education remains problematic given low retention figures in science courses, in particular in open-enrolment universities. Adjustment to a new learning environment and dealing with the mass experience are factors at play. We looked for ways to ease the adjustment and to moderate the mass experience by creating a moderate-structure Cell Biology course, characterized by broup-based activities, frequent in-course assessment and reduced weighting of the final exam score. Comparison of 4 years of low-structure with 4 years of moderate-structure courses, after corretion for annual cohort ability, revealed that moderate-structure yields 8% higher grade points and 5% higher retention. However, the overall gain in performance was largely dependent on in-course scores and improvements were only weak for the final exam. The frequency of students underperforming on the final exam, relative to their in-course scores, increased enormously in moderate-struc...
2012
We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demon-strate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4 % [n = 160] and 62 % [n = 285], respectively; p < 0.001);. The higher-achieving stu-dents performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, pho-tosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with gr...