Phylogenetic patterns of enamel microstructure in dinosaur teeth (original) (raw)

Tooth enamel microstructure of Revueltosaurus and Krzyzanowskisaurus (Reptilia:Archosauria) from the Upper Triassic Chinle Group, USA: Implications for function, growth, and phylogeny

Palaeontologia Electronica, 2013

Tooth enamel microstructure can carry significant phylogenetic, ontogenetic, and functional information within amniotes. Here we provide the first descriptions of the tooth enamel microstructure of two Late Triassic taxa, the crurotarsan Revueltosaurus callenderi Hunt and the putative ornithischian Krzyzanowskisaurus hunti (Heckert), which some consider closely related. To test the hypotheses that enamel thickness corresponds to function and/or phylogeny we analyzed the enamel of each at various scales, measuring enamel thickness and examining microstructural features throughout both longitudinal and cross-sectional thickness using previously established techniques to facilitate comparisons. Both taxa possess thick (up to ~150 µm) enamel for their size (< 20 mm crown height). Enamel in R. callenderi ranged from ~5-152 µm across a premaxillary tooth in longitudinal section, and ~42-92 µm in a maxillary/dentary tooth transverse section. K. hunti enamel thickness was ~18-155 µm longitudinally and ~29-75 µm transversely. Both also had well-developed basal unit layers (BUL) and weakly developed columnar microstructure. Well-developed lines of incremental growth (LIG) are present in both taxa, through which the columnar enamel grades into parallel crystallite enamel. Their enamel microstructure is therefore grossly similar to that of several ornithischian taxa, especially ankylosaurs, with which they are strongly convergent, and also compares well to rauisuchids and tyrannosaurids. The relatively unique combination of microstructural characteristics in the schmelzmuster of R. callenderi and K. hunti supports the hypothesis that they are closely related, but does not conclusively preclude a different taxonomic placement for K. hunti so we retain its separate generic designation.

Dental morphology and variation in theropod dinosaurs: Implications for the taxonomic identification of isolated teeth

The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005

Isolated theropod teeth are common Mesozoic fossils and would be an important data source for paleoecology biogeography if they could be reliably identified as having come from particular taxa. However, obtaining identifications is confounded by a paucity of easily identifiable characters. Here we discuss a quantitative methodology designed to provide defensible identifications of isolated teeth using Tyrannosaurus as a comparison taxon. We created a standard data set based as much as possible on teeth of known taxonomic affinity against which to compare isolated crowns. Tooth morphology was described using measured variables describing crown length, base length and width, and derived variables related to basal shape, squatness, mesial curve shape, apex location with respect to base, and denticle size. Crown curves were described by fitting the power function Y ϭ a ϩ bX 0.5 to coordinate data collected from lateral-view images of mesial curve profiles. The b value from these analyses provides a measure of curvature. Discriminant analyses compared isolated teeth of various taxonomic affinities against the standard. The analyses classified known Tyrannosaurus teeth with Tyrannosaurus and separated most teeth known not to be Tyrannosaurus from Tyrannosaurus. They had trouble correctly classifying teeth that were very similar to Tyrannosaurus and for which there were few data in the standard. However, the results indicate that expanding the standard should facilitate the identification of numerous types of isolated theropod teeth. 2005 Wiley-Liss, Inc.

Updating and Recoding Enamel Microstructure in Mesozoic Mammals: In Search of Discrete Characters for Phylogenetic Reconstruction

Journal of Mammalian Evolution, 2005

The previously unknown enamel microstructure of a variety of Mesozoic and Paleogene mammals ranging from monotremes and docodonts to therians is described and characterized here. The novel information is used to explore the structural diversity of enamel in early mammals and to explore the impact of the new information for systematics. It is presently unclear whether enamel prisms arose several times during mammalian evolution or arose only once with several reversals to prismless structure. At least two undisputed reversions or simplifications are known-in the monotreme clade from Obdurodon to Ornithorhynchus (via Monotrematum?), and (perhaps more than once) within the clade from archaeocete to a variety of odontocete whales. Similarly, both prismatic and nonprismatic enamel is present among docodonts. Seven discrete characters showing enough morphological diversity to be of potential importance in phylogenetic reconstructions may be identified as a more appropriate summary of enamel microstructural diversity among mammaliaforms than the single character "prismatic enamel-present/absent" employed in recent matrices. Inclusion of five of these characters in the matrix of Luo et al. (2002) modifies the original topology by collapsing several nodes involving triconodonts and other nontribosphenic taxa. There is considerable support for prismatic enamel as a synapomorphy of trithelodonts plus Mammaliamorpha, and multituberculates appear to have small or "normal" sized prisms as the ancestral condition, with some (as yet) enigmatic changes to nonprismatic structure in some basal members of the group and the appearance of "gigantoprismatic" structure as an autapomorphic state of less inclusive clades. Other potential qualitative characters and the need for attaining appropriate methods to incorporate quantitative features may be important for future analyses.

Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds

BMC Evolutionary Biology

Background Tooth morphology within theropod dinosaurs has been extensively investigated and shows high disparity throughout the Cretaceous. Changes or diversification in feeding ecology, i.e., adoption of an herbivorous diet (e.g., granivorous), is proposed as a major driver of tooth evolution in Paraves (e.g., Microraptor, troodontids and avialans). Here, we studied the microscopic features of paravian non-avian theropod and avialan teeth using high-spatial-resolution synchrotron transmission X-ray microscopy and scanning electron microscopy. Results We show that avialan teeth are characterized by the presence of simple enamel structures and a lack of porous mantle dentin between the enamel and orthodentin. Reduced internal structures of teeth took place independently in Early Cretaceous birds and a Microraptor specimen, implying that shifts in diet in avialans from that of closely related dinosaurs may correlate with a shift in feeding ecology during the transition from non-avian ...

Multivariate analyses of small theropod dinosaur teeth and implications for paleoecological turnover through time

Isolated small theropod teeth are abundant in vertebrate microfossil assemblages, and are frequently used in studies of species diversity in ancient ecosystems. However, determining the taxonomic affinities of these teeth is problematic due to an absence of associated diagnostic skeletal material. Species such as Dromaeosaurus albertensis, Richardoestesia gilmorei, and Saurornitholestes langstoni are known from skeletal remains that have been recovered exclusively from the Dinosaur Park Formation (Campanian). It is therefore likely that teeth from different formations widely disparate in age or geographic position are not referable to these species. Tooth taxa without any associated skeletal material, such as Paronychodon lacustris and Richardoestesia isosceles, have also been identified from multiple localities of disparate ages throughout the Late Cretaceous. To address this problem, a dataset of measurements of 1183 small theropod teeth (the most specimen-rich theropod tooth dataset ever constructed) from North America ranging in age from Santonian through Maastrichtian were analyzed using multivariate statistical methods: canonical variate analysis, pairwise discriminant function analysis, and multivariate analysis of variance. The results indicate that teeth referred to the same taxon from different formations are often quantitatively distinct. In contrast, isolated teeth found in time equivalent formations are not quantitatively distinguishable from each other. These results support the hypothesis that small theropod taxa, like other dinosaurs in the Late Cretaceous, tend to be exclusive to discrete host formations. The methods outlined have great potential for future studies of isolated teeth worldwide, and may be the most useful non-destructive technique known of extracting the most data possible from isolated and fragmentary specimens. The ability to accurately assess species diversity and turnover through time based on isolated teeth will help illuminate patterns of evolution and extinction in these groups and potentially others in greater detail than has previously been thought possible without more complete skeletal material.

Enamel microstructure of ceratopsian teeth (Reptilia, Archosauria)

Geobios, 1988

The microstructural study of the enamel of ceratopstian dinosaur teeth indicates the presence of two layers, an external non-prismatic layer and an internal prismatic one. Therefore, the prismatic structure among Dinosaurs and other reptiles cannot be related to the feeding habits. As prisms are also present in non functional premaxillary teeth of Protoceratops, they cannot be related to functional aspects. Finally, the meaning of enamel prisms in Reptiles is dicussed, but not yet so)~ved.

A proposed terminology of theropod teeth (Dinosauria, Saurischia)

Theropod teeth are typically not described in detail, yet these abundant vertebrate fossils are not only frequently reported in the literature, but also preserve extensive anatomical information. Often in descriptions, important characters of the crown and ornamentations are omitted, and in many instances, authors do not include a description of theropod dentition at all. The paucity of information makes identification of isolated teeth difficult and taxonomic assignments uncertain. Therefore, we here propose a standardization of the anatomical and morphometric terms for tooth anatomical subunits, as well as a methodology to describe isolated teeth comprehensively. As a corollary, this study exposes the importance of detailed anatomical descriptions with the utilitarian purpose of clarifying taxonomy and identifying isolated theropod teeth.