Serine319 and 321 Are Functional in Isocitrate Lyase from Escherichia coli (original) (raw)

A comparison of the phosphorylated and unphosphorylated forms of isocitrate dehydrogenase from Escherichia coli ML308

FEBS Letters, 1984

NADP+ can protect active isocitrate dehydrogenase against attack by several proteases. Inactive phosphorylated isocitrate dehydrogenase is much less susceptible to proteolysis than the active enzyme, and it is not protected by NADP+. The results suggest that binding of NADP+ to, or phosphorylation of, active isocitrate dehydrogenase induces similar conformational states. Fluorescence titration experiments show that NADPH can bind to active but not to inactive isocitrate dehydrogenase. It is suggested that the phosphorylation of isocitrate dehydrogenase may occur close to its coenzyme binding site.

Identification of the histidine residue in Escherichia coli isocitrate lyase that reacts with diethylpyrocarbonate

Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1992

Escherichia coli isocitrate iyase was inactivated by diethylpyrocarbonate in a pseudo-first-order process. The enzyme was completely inactivated by modification of a single histidine residue, but slower modification of further residues also occurred. The substrate, isocitrate, and products, glyoxylate and succinate, protected against inactivation by diethylpyrocarbonate but this was not simply due to binding at the active site. Treatment of the inactivated enzyme with hydroxylamine led to only partial recovery of activity. Diethylpyrocarbonate also reacted with sulphydryl groups in isocitrate lyase, as judged by titrations with Nbs 2, but this reaction was not responsible for the failure of hydroxylamine to reactivate the enzyme fully. The reactivity of isocitrate lyase to diethylpyrocarbonate declined with pH, following a titration curve for a group of pK~ 6.1. Isolation and sequencing of ethoxyformylated peptides showed that the major site of modification by diethylpyrocarbonate was histidine residue 306.

Control of Isocitrate Dehydrogenase Catalytic Activity by Protein Phosphorylation in Escherichia coli

Microbial Physiology, 2005

During aerobic growth of Escherichia coli on acetate as sole source of carbon and energy, the organism requires the operation of the glyoxylate bypass enzymes, namely isocitrate lyase (ICL) and the anaplerotic enzyme malate synthase (MS). Under these conditions, the glyoxylate bypass enzyme ICL is in direct competition with the Krebs cycle enzyme isocitrate dehydrogenase (ICDH) for their common substrate and although ICDH has a much higher affinity for isocitrate, flux of carbon through ICL is assured by virtue of high intracellular level of isocitrate and the reversible phosphorylation/inactivation of a large fraction of ICDH. Reversible inactivation is due to reversible phosphorylation catalysed by ICDH kinase/phosphatase, which harbours both catalytic activities on the same polypeptide. The catalytic activities of ICDH kinase/phosphatase constitute a moiety conserved cycle, require ATP and exhibit ‘zero-order ultrasensitivity’. The structural gene encoding ICDH kinase/phosphatase...

Evidence for an arginine residue at the coenzyme-binding site of Escherichia coli isocitrate dehydrogenase

The Biochemical journal, 1989

The arginine-specific reagent phenylglyoxal inactivated the active, dephosphorylated, form of Escherichia coli isocitrate dehydrogenase rapidly in a pseudo-first-order process. Both NADP+ and NADPH protected the enzyme against inactivation. Phenylglyoxal appeared to react with one arginine residue per subunit, and the extent of the reaction was proportional to the extent of the inactivation. In contrast, the phosphorylated form of isocitrate dehydrogenase did not react detectably with phenylglyoxal. The data indicate that the coenzyme-binding site of isocitrate dehydrogenase contains a reactive arginine residue that is protected by phosphorylation, and are consistent with the hypothesis that phosphorylation of the enzyme occurs close to or at its active site.

Partial purification and properties of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli ML308

European journal of biochemistry / FEBS, 1984

Isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase were purified over 1000-fold from Escherichia coli ML308 by procedure involving fractionation with (NH4)2SO4 and chromatography on DEAE-cellulose, blue-dextran-Sepharose and Sephadex G150. The kinase and phosphatase activities copurified, in agreement with the observation [Laporte, D.C. and Koshland, D.E. (1982) Nature (Lond.) 300, 458-460] that a single protein bears both activities. Isocitrate dehydrogenase kinase catalysed the phosphorylation of homogeneous active isocitrate dehydrogenase with a stoichiometry of just under one phosphate group incorporated per subunit. This almost completely inactivated the dehydrogenase. There was a good correlation between phosphorylation and inactivation. Analysis of a partial acid hydrolysate of phosphorylated isocitrate dehydrogenase showed that the only phosphoamino acid present was phosphoserine. Isocitrate dehydrogenase phosphatase catalysed the release of 32P from 32...