Neuropeptidomics: expanding proteomics downwards (original) (raw)
Related papers
Journal of Mass Spectrometry, 2005
The increasing use of proteomics has created a basis for new strategies to develop methodologies for rapid identification of protein patterns in living organisms. It has also become evident that proteomics has other potential applications than protein and peptide identification, e.g. protein characterization, with the aim of revealing their structure, function(s) and interactions of proteins. In comparative proteomics studies, the protein expression of a certain biological system is compared with another system or the same system under perturbed conditions. Global identification of proteins in neuroscience is extremely complex, owing to the limited availability of biological material and very low concentrations of the molecules. Moreover, in addition to proteins, there are number of peptides that must also be considered in global studies on the central nervous system. In this overview, we focus on and discuss problems related to the different sources of biological material and sample handling, which are part of all preparatory and analytical steps. Straightforward protocols are desirable to avoid excessive purification steps, since loss of material at each step is inevitable. We would like to merge the two worlds of proteomics/peptidomics and neuroscience, and finally we consider different practical and technical aspects, illustrated with examples from our laboratory.
PROTEOMICS, 2007
Comparisons of transcriptional and translational expression in normal and abnormal states are important to reach an understanding of pathogenesis and pathophysiology. Maintaining the biochemical, molecular, and structural sample integrity is essential for correct sample comparisons. We demonstrate that both proteins and neuropeptides, including their PTMs, are subjected to massive degradation in the brain already 1 min postmortem. Further, markers for determining the integrity and status of a biological sample were identified. The protein fragment stathmin 2-20 correlated well with the general level of postmortem degradation and may serve as a sample quality indicator for future work, both in animal and human postmortem brains. Finally, a novel method for preventing degradation of proteins and peptides in postmortem tissue is presented using rapid and uniform conductive heat transfer on tissue prior to the actual sample preparation procedures, which enables the relatively low-abundant neuropeptides to remain intact, minimizes degradation of proteins by proteolysis, and conserves the PTMs of the neuropeptides. Abbreviations: CLIP, corticotropin-like intermediate lobe peptide; LTQ, linear trap quadrupole; MAPK, mitogen-activated protein kinase; Q-TOF, quadrupole time-of-flight; UniProtKB, Universal Protein Resource Knowledgebase * Both these authors contributed equally to this work.
Analytical Chemistry, 2010
Elevated chromatographic temperatures are well recognized to provide beneficial analytical effects. Previously, we demonstrated that elevated chromatographic temperature enhances the identification of hydrophobic peptides prepared from enriched membrane samples. Here, we quantitatively assess and compare the recovery of peptide analytes from both simple and complex tryptic peptide matrices using the SRM mass spectrometry. Our study demonstrates that elevated chromatographic temperature results in significant improvements in the magnitude of peptide recovery for both hydrophilic and hydrophobic peptides from both simple and complex peptide matrices. Importantly, the analytical benefits for quantitative measurements in whole mouse brain matrix are demonstrated, suggesting broad utility in the proteomic analyses of complex mammalian tissues. Any improvement in peptide recovery from chromatographic separations translates directly to the apparent sensitivity of downstream mass analysis in μLC-MS/MS based proteomic applications. Therefore, the incorporation of elevated chromatographic temperatures should result in significant improvements in peptide quantification as well as detection and identification.
Neuropeptidomics: Mass spectrometry-based qualitative and quantitative analysis
Methods in Molecular Biology, 2011
Neuropeptidomics refers to a global characterization approach for the investigation of neuropeptides, often under specific physiological conditions. Neuropeptides comprise a complex set of signaling molecules that are involved in regulatory functions and behavioral control in the nervous system. Neuropeptidomics is inherently challenging because neuropeptides are spatially, temporally, and chemically heterogeneous, making them difficult to predict in silico from genomic information. Mature neuropeptides are produced from intricate enzymatic processing of precursor proteins/prohormones via a range of posttranslational modifications, resulting in multiple final peptide products from each prohormone gene. Although there are several methods for targeted peptide studies, mass spectrometry (MS), with its qualitative and quantitative capabilities, is ideally suited to the task. MS provides fast, sensitive, accurate, and highthroughput peptidomic analysis of neuropeptides without requiring prior knowledge of the peptide sequences. Aided by liquid chromatography (LC) separations and bioinformatics, MS is quickly becoming a leading technique in neuropeptidomics. This chapter describes several LC-MS analytical methods to identify, characterize, and quantify neuropeptides while emphasizing the sample preparation steps so integral to experimental success.
Peptides in the Brain: Mass Spectrometry–Based Measurement Approaches and Challenges
Annual Review of Analytical Chemistry, 2008
The function and activity of almost every circuit in the human brain are modified by the signaling peptides (SPs) surrounding the neurons. As the complement of peptides can vary even in adjacent neurons and their physiological actions can occur over a broad range of concentrations, the required figures of merit for techniques to characterize SPs are surprisingly stringent. In this review, we describe the formation and catabolism of SPs and highlight a range of mass spectrometric techniques used to characterize SPs. Approaches that supply high chemical information content, direct tissue profiling, spatially resolved data, and temporal information on peptide release are also described. Because of advances in measurement technologies, our knowledge of SPs has greatly increased over the last decade, and SP discoveries will continue as the capabilities of modern measurement approaches improve.
Journal of Separation Science, 2008
Peptidomics: The integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis MS is currently one of the most important analytical techniques in biological and medical research. ESI and MALDI launched the field of MS into biology. The performance of mass spectrometers increased tremendously over the past decades. Other technological advances increased the analytical power of biological MS even more. First, the advent of the genome projects allowed an automated analysis of mass spectrometric data. Second, improved separation techniques, like nanoscale HPLC, are essential for MS analysis of biomolecules. The recent progress in bioinformatics is the third factor that accelerated the biochemical analysis of macromolecules. The first part of this review will introduce the basics of these techniques. The field that integrates all these techniques to identify endogenous peptides is called peptidomics and will be discussed in the last section. This integrated approach aims at identifying all the present peptides in a cell, organ or organism (the peptidome). Today, peptidomics is used by several fields of research. Special emphasis will be given to the identification of neuropeptides, a class of short proteins that fulfil several important intercellular signalling functions in every animal. MS imaging techniques and biomarker discovery will also be discussed briefly.
PROTEOMICS, 2006
This paper reports on the findings of the Biomedical Research Institute, as one of the participants in the pilot study of the HUPO Brain Proteome Project. A biopsy and autopsy study sample derived from human brain was distributed among the participants for proteomic analysis. In our laboratory, attention was focused on protein identification using the bottom-up shotgun approach. Protein extracts derived from both samples were trypsinized and analyzed separately by 2-D LC and MS. In a complementary approach, the tryptic digests were analyzed directly by LC-ESI-MS/MS and gas-phase fractionation in the mass spectrometer. Taken together, both proteomic approaches in combination with a stringent evaluation process, resulted in the confident identification of 209 proteins in the human brain samples under investigation.