Tuning Transthyretin Amyloidosis Inhibition Properties of Iododiflunisal by Combinatorial Engineering of the Nonsalicylic Ring Substitutions (original) (raw)
Related papers
Biochemical …, 2004
In familial amyloidotic polyneuropathy, TTR (transthyretin) variants are deposited as amyloid fibrils. It is thought that this process involves TTR tetramer dissociation, which leads to partially unfolded monomers that aggregate and polymerize into amyloid fibrils. This process can be counteracted by stabilization of the tetramer. Several small compounds, such as diclofenac, diflunisal and flufenamic acid, have been reported to bind to TTR in vitro, in the T 4 (thyroxine) binding channel that runs through the TTR tetramer, and consequently are considered to stabilize TTR. However, if these agents bind plasma proteins other than TTR, decreased drug availability will occur, compromising their use as therapeutic agents for TTR amyloidosis. In the present work, we compared the action of these compounds and of new derivatives designed to increase both selectivity of binding to TTR and inhibitory potency in relation to TTR amyloid fibril formation. We found two diflunisal derivatives that, in contrast with diclofenac, flufenamic acid and diflunisal, displaced T 4 from TTR in plasma preferentially over binding to albumin and thyroxine binding globulin. The same diflunisal derivatives also had a stabilizing effect on TTR tetramers in plasma, as studied by isoelectric focusing of whole plasma under semi-denaturing conditions. In addition, by transmission electron microscopy, we demonstrated that, in contrast with other proposed TTR stabilizers (namely diclofenac, flufenamic acid and diflunisal), one of the diflunisal derivatives tested efficiently inhibited TTR aggregation. Taken together, our ex vivo and in vitro studies present evidence for the selectivity and efficiency of novel diflunisal derivates as TTR stabilizers and as inhibitors of fibril formation.
Biochemical Journal, 2005
Ex vivo and in vitro studies have revealed the remarkable amyloid inhibitory potency and specificity of iododiflunisal in relation to transthyretin [Almeida, Macedo, Cardoso, Alves, Valencia, Arsequell, Planas and Saraiva (2004) Biochem. J. 381, 351–356], a protein implicated in familial amyloidotic polyneuropathy. In the present paper, the crystal structure of transthyretin complexed with this diflunisal derivative is reported, which enables a detailed analysis of the protein–ligand interactions. Iododiflunisal binds very deep in the hormone-binding channel. The iodine substituent is tightly anchored into a pocket of the binding site and the fluorine atoms provide extra hydrophobic contacts with the protein. The carboxylate substituent is involved in an electrostatic interaction with the Nζ of a lysine residue. Moreover, ligand-induced conformational alterations in the side chain of some residues result in the formation of new intersubunit hydrogen bonds. All these new interactions...
PLoS ONE, 2009
Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of b-aminoxypropionic acids (compounds 5-21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR:inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp 2 -hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22-32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding. (JCS) . These authors contributed equally to this work.
Journal of the American Chemical Society, 2010
Transthyretin aggregation-associated proteotoxicity appears to cause several human amyloid diseases. Rate-limiting tetramer dissociation and monomer misfolding of transthyretin (TTR) occur before its aggregation into cross-β-sheet amyloid fibrils. Small molecule binding to and preferential stabilization of the tetrameric state of TTR over the dissociative transition state raises the kinetic barrier for dissociation, imposing kinetic stabilization on TTR and preventing aggregation. This is an effective strategy to halt neurodegeneration associated with polyneuropathy, according to recent placebo-controlled clinical trial results. In three recent papers, we systematically ranked possibilities for the three substructures composing a typical TTR kinetic stabilizer, using fibril inhibition potency and plasma TTR binding selectivity data. Herein, we have successfully employed a substructure combination strategy to use these data to develop potent and selective TTR kinetic stabilizers that rescue cells from the cytotoxic effects of TTR amyloidogenesis. Of the 92 stilbene and dihydrostilbene analogues synthesized, nearly all potently inhibit TTR fibril formation. Seventeen of these exhibit a binding stoichiometry of > 1.5 of a maximum of 2 to plasma TTR, while displaying minimal binding to the thyroid hormone receptor (< 20%). Six analogues were definitively categorized as kinetic stabilizers by evaluating dissociation time-courses. High resolution TTR• (kinetic stabilizer) 2 crystal structures (1.31-1.70 Å) confirmed the anticipated binding orientation of the 3,5-dibromo-4-hydroxyphenyl substructure and revealed a strong preference of the isosteric 3,5dibromo-4-aminophenyl substructure to bind to the inner thyroxine binding pocket.
Journal of Enzyme Inhibition and Medicinal Chemistry, 2016
Transthyretin (TTR), a b-sheet-rich tetrameric protein, in equilibrium with an unstable amyloidogenic monomeric form is responsible for extracellular deposition of amyloid fibrils, is associated with the onset of neurodegenerative diseases, such as senile systemic amyloidosis, familial amyloid polyneuropathy and familial amyloid cardiomyopathy. One of the therapeutic strategies is to use small molecules to stabilize the TTR tetramer and thus curb amyloid fibril formation. Here, we report the synthesis, the in vitro evaluation of several halogen substituted 9-fluorenyl-and di-benzophenon-based ligands and their three-dimensional crystallographic analysis in complex with TTR. The synthesized compounds bind TTR and stabilize the tetramer with different potency. Of these compounds, 2c is the best inhibitor. The dual binding mode prevalent in the absence of substitutions on the fluorenyl ring, is disfavored by (2,7-dichlorofluoren-9-ylideneaminooxy)-acetic acid (1b), (2,7-dibromo-fluoren-9-ylideneaminooxy)-acetic acid (1c) and (E/Z)-((3,4-dichloro-phenyl)-methyleneaminooxy)-acetic acid (2c), all with halogen substitutions.
A novel bis-furan scaffold for transthyretin stabilization and amyloid inhibition
European Journal of Medicinal Chemistry, 2016
misfolding neurodegenerative disease; LT-liver transplant; CAA-cerebral amyloid angiopathy; NSAID-non-steroidal anti-inflammatory drug; VS-virtual screening; T4-thyroxine; ALB-albumin; TBG-thyroxine-binding globulin; IEF-isoelectric focusing; ITC-isothermal titration calorimetry Highlights-A novel bis-furan scaffold is disclosed-Early optimization leading to efficient TTR amyloid inhibitors is described-Unprecedented ability to stabilize the native form of wild-type TTR is achieved Author contributions Carlos J. V. Simões-theoretical studies, computational screening and optimization, manuscript writing, work planning. Zaida L. Almeida-protein expression and purification, biochemical evaluation, isothermal titration calorimetry experiments, cell-based assays, contributions to manuscript writing. Dora Costa-synthetic work. Ana L. Cardoso-synthetic work and contributions to manuscript writing. Catarina S. H. Jesus-protein purification, biochemical evaluation, isothermal titration calorimetry experiments. Maria R. Almeida-thyroxine competition studies, isoelectric focusing assays. Maria J. Saraiva-coordination of ex vivo studies, contribution to manuscript writing. Teresa M. V. D. Pinho e Melo-coordination of synthetic work, contributions to manuscript writing. Rui M. M. Brito-coordination of in vitro work, contributions to manuscript writing, work planning. Appendix A. Supplementary Data The following is the supplementary data related to this article: Supporting information available: Synthesis of tafamidis, 1 H NMR and 13 C spectra of furan derivatives, 31 P NMR spectra of compounds 6 and 10, inhibition curve for AT09-A00 against wild-type TTR amyloid formation, thyroxine-binding competition assay results for TTR, albumin and thyroxine-binding globulin.
Journal of Combinatorial Chemistry, 2005
Stabilization of tetrameric transthyretin (TTR) by binding of small ligands is a current strategy aimed at inhibiting amyloid fibrillogenesis in transthyretin-associated pathologies, such as senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). A kinetic assay is developed for rapid evaluation of compounds as potential in vitro inhibitors in a high-throughput screening format. It is based on monitoring the time-dependent increase of absorbance due to turbidity occurring by acid-induced protein aggregation. The method uses the highly amyloidogenic Y78F mutant of human transthyretin (heterogously expressed in Escherichia coli cells). Initial rates of protein aggregation at different inhibitor concentrations follow a monoexponential dose-response curve from which inhibition parameters are calculated. For the assay development, thyroid hormones and nonsteroidal antiinflamatory drugs were chosen among other reference compounds. Some of them are already known to be in vitro inhibitors of TTR amyloidogenesis. Analysis time is optimized to last 1.5 h, and the method is implemented in microtiter plates for screening of libraries of potential fibrillogenesis inhibitors.
Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores
Proceedings of the National Academy of Sciences, 2007
Carboranes represent a potentially rich but underutilized class of inorganic and catabolism-inert pharmacophores. The regioselectivity and ease of derivatization of carboranes allows for facile syntheses of a wide variety of novel structures. The steric bulk, rigidity, and ease of B- and C-derivatization and lack of π-interactions associated with hydrophobic carboranes may be exploited to enhance the selectivity of previously identified bioactive molecules. Transthyretin (TTR) is a thyroxine-transport protein found in the blood that has been implicated in a variety of amyloid related diseases. Previous investigations have identified a variety of nonsteroidal antiinflammatory drugs (NSAIDs) and structurally related derivatives that imbue kinetic stabilization to TTR, thus inhibiting its dissociative fragmentation and subsequent aggregation to form putative toxic amyloid fibrils. However, the cyclooxygenase (COX) activity associated with these pharmaceuticals may limit their potential...
Chemistry – A European Journal, 2020
The protein transthyretin (TTR) modulates Abeta (Aβ) peptides deposition and processing and this physiological effect is further enhanced by treatment with iododiflunisal (IDIF), a smallmolecule compound (SMC) with TTR tetramer stabilization properties that behaves as chaperone of the complex. This knowledge has prompted us to design and optimize a rapid and simple highthroughput assay that relies on the ability of test compounds to form ternary soluble complexes TTR/Aβ/SMC that prevent Aβ aggregation. The method uses the shorter Aβ(12-28) sequence which is cheaper and simpler to use while retaining the aggregation properties of their parents Aβ(1-40) and Aβ(1-42). The test is carried out in 96-plate wells that are UV monitored for turbidity during 6 h. Given its reproducibility, we propose that this test can be a powerful tool for efficient screening of SMCs that act as chaperones of the TTR/Aβ interaction that may led to potential AD therapies.