Theoretical and experimental studies on large-bandwidth 1.55-μm integrated InP-based strained MQW laser-modulators (original) (raw)
SPIE Proceedings, 1997
Abstract
The performance characteristics of an integrated InGaAsP/InP laser-modulator made by one step epitaxy and well-controlled reactive ion etching (RIE) have been analyzed and measured. A theoretical model based on a finite-difference time domain (FDTD) technique was used to simulate the propagation of a optical wave launched in the coupled system and determine the reflectivity of the facets created by RIE. The calculated effective reflectivity of the coupling region consisting of two facets and an air gap in between is 0.55, which is in a good agreement with the experimentally measured value of 0.5. The reflectivity of a single etched mirror derived from this value is estimated to be 0.3. A 120 micrometer long integrated modulator excited by the laser shows a maximum extinction ratio of 8 dB and a modulation bandwidth greater than or equal to 14 GHz at a dc bias of minus 0.5 V with a bias swing of 2 V. This is comparable to the best results reported for an integrated modulator.
Yahsing Yuan hasn't uploaded this paper.
Let Yahsing know you want this paper to be uploaded.
Ask for this paper to be uploaded.