Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae) (original) (raw)

Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti

PLoS neglected tropical diseases, 2015

Dengue viruses (DENV) are the causative agents of dengue, the world's most prevalent arthropod-borne disease with around 40% of the world's population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia's efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito's ability to transmit DENVs, as ...

Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti

PLOS Pathogens, 2020

The insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes. All Wolbachiainfected mosquitoes were more resistant to intrathoracic DENV challenge than their wildtype counterparts. Blocking of DENV replication was greatest by wMelCS. Conversely, wAlbBinfected mosquitoes were more susceptible to whole body infection than wMel and wMelCS. We extended these findings via mosquito oral feeding experiments, using viremic blood from 36 acute, hospitalised dengue cases in Vietnam, additionally including wMel and wildtype mosquitoes on a Vietnamese nuclear genetic background. As above, wAlbB was less effective at blocking DENV replication in the abdomen compared to wMel and wMelCS. The transmission potential of all Wolbachia-infected mosquito lines (measured by the presence/ absence of infectious DENV in mosquito saliva) after 14 days, was significantly reduced compared to their wildtype counterparts, and lowest for wMelCS and wAlbB. These data support the use of wAlbB and wMelCS strains for introgression field trials and the biocontrol of DENV transmission. Furthermore, despite observing significant differences in transmission potential between wildtype mosquitoes from Australia and Vietnam, no difference was observed between wMel-infected mosquitoes from each background suggesting that Wolbachia may override any underlying variation in DENV transmission potential.

The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti

Parasites & vectors, 2017

Wolbachia pipientis is a common endosymbiotic bacterium of arthropods that strongly inhibits dengue virus (DENV) infection and transmission in the primary vector, the mosquito Aedes aegypti. For that reason, Wolbachia-infected Ae. aegypti are currently being released into the field as part of a novel strategy to reduce DENV transmission. However, there is evidence that DENV can be transmitted vertically from mother to progeny, and this may help the virus persist in nature in the absence of regular human transmission. The effect of Wolbachia infection on this process had not previously been examined. We challenged Ae. aegypti with different Brazilian DENV isolates either by oral feeding or intrathoracic injection to ensure disseminated infection. We examined the effect of Wolbachia infection on the prevalence of DENV infection, and viral load in the ovaries. For orally infected mosquitoes, Wolbachia decreased the prevalence of infection by 71.29%, but there was no such effect when th...

Replacing a Native Wolbachia with a Novel Strain Results in an Increase in Endosymbiont Load and Resistance to Dengue Virus in a Mosquito Vector

PLoS Neglected Tropical Diseases, 2013

Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV), filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected ''MTB'' strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2) within the wild type ''APM'' strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control.

Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes

Proceedings of the National Academy of Sciences of the United States of America, 2017

The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.

A NativeWolbachiaEndosymbiont Does Not Limit Dengue Virus Infection in the MosquitoAedes notoscriptus(Diptera: Culicidae)

Journal of Medical Entomology, 2015

The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.

The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations

Nature, 2011

Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries 1,2. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing 2-4. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti 5,6. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control 7-9. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines 8. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens 9-11 has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression 12. A successful Wolbachia-based program for dengue control requires the inherited bacterial infection to efficiently invade wild A. aegypti populations. Invasion is based on the induction of a particular reproductive phenotype by Wolbachia known as cytoplasmic incompatibility 13,14 , which leads to early embryonic death when Wolbachia-infected males mate with uninfected females. In contrast, Wolbachia-infected females produce viable embryos when mated with either infected or uninfected males, resulting in a reproductive advantage over uninfected females 13. Although cytoplasmic incompatibility provides a driving force for Wolbachia invasion, successful invasion also depends on both the initial frequency of Wolbachia as well as any host fitness costs 15. As fitness costs increase, higher initial Wolbachia frequencies are required for invasion. Mathematical predictions indicate that as the fitness cost of infection approaches 0.5 then spatial spreading of Wolbachia slows to zero 15. Therefore, although the wMelPop-CLA strain induces complete cytoplasmic incompatibility in A. aegypti 8 , fitness costs associated with this virulent infection may be sufficient to prevent invasion 15,16 .