Evolution of VIM-1-Producing Klebsiella pneumoniae Isolates from a Hospital Outbreak Reveals the Genetic Bases of the Loss of the Urease-Positive Identification Character (original) (raw)
Related papers
Rapid phenotypic evolution in multidrug-resistant Klebsiella pneumoniae hospital outbreak strains
Microbial Genomics
Carbapenem-resistant Klebsiella pneumoniae (CRKP) increasingly cause high-mortality outbreaks in hospital settings globally. Following a patient fatality at a hospital in Beijing due to a bla KPC-2-positive CRKP infection, close monitoring was put in place over the course of 14 months to characterize all bla KPC-2-positive CRKP in circulation in the hospital. Whole genome sequences were generated for 100 isolates from bla KPC-2-positive isolates from infected patients, carriers and the hospital environment. Phylogenetic analyses identified a closely related cluster of 82 sequence type 11 (ST11) isolates circulating in the hospital for at least a year prior to admission of the index patient. The majority of inferred transmissions for these isolates involved patients in intensive care units. Whilst the 82 ST11 isolates collected during the surveillance effort all had closely related chromosomes, we observed extensive diversity in their antimicrobial resistance (AMR) phenotypes. We were able to reconstruct the major genomic changes underpinning this variation in AMR profiles, including multiple gains and losses of entire plasmids and recombination events between plasmids, including transposition of bla KPC-2. We also identified specific cases where variation in plasmid copy number correlated with the level of phenotypic resistance to drugs, suggesting that the number of resistance elements carried by a strain may play a role in determining the level of AMR. Our findings highlight the epidemiological value of whole genome sequencing for investigating multi-drug-resistant hospital infections and illustrate that standard typing schemes cannot capture the extraordinarily fast genome evolution of CRKP isolates.
EMBO molecular medicine, 2015
Multidrug-resistant (MDR) Klebsiella pneumoniae has become a leading cause of nosocomial infections worldwide. Despite its prominence, little is known about the genetic diversity of K. pneumoniae in resource-poor hospital settings. Through whole-genome sequencing (WGS), we reconstructed an outbreak of MDR K. pneumoniae occurring on high-dependency wards in a hospital in Kathmandu during 2012 with a case-fatality rate of 75%. The WGS analysis permitted the identification of two MDR K. pneumoniae lineages causing distinct outbreaks within the complex endemic K. pneumoniae. Using phylogenetic reconstruction and lineage-specific PCR, our data predicted a scenario in which K. pneumoniae, circulating for 6 months before the outbreak, underwent a series of ward-specific clonal expansions after the acquisition of genes facilitating virulence and MDR. We suggest that the early detection of a specific NDM-1 containing lineage in 2011 would have alerted the high-dependency ward staff to interv...
Antimicrobial Agents and Chemotherapy, 2012
We study the epidemiology, molecular basis, clinical risk factors, and outcome involved in the clonal dissemination of VIM-1producing Klebsiella pneumoniae isolates in the hospital setting. All patients infected/colonized by carbapenem-nonsusceptible K. pneumoniae (CNSKP) in 2009 were included. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Antibiotic resistance genes were analyzed by PCR and sequencing. Plasmids were studied by PFGE with S1 nuclease digestion and for incompatibility group by a PCR-based replicon typing scheme. Risk factors associated with CNSKP colonization/infection were assessed by an observational case-control study. All 55 patients studied were infected (n ؍ 28) or colonized (n ؍ 27) by VIM-1-producing K. pneumoniae. All but one acquired isolates of a single clone (PFGE cluster 1 [C1], sequence type 15 [ST15]), while another clone (PFGE C2, ST340) was detected in four patients. C1 isolates also produced the new extended-spectrum -lactamase SHV-134. bla VIM-1 was carried in a class 1 integron and an untypeable plasmid of ϳ50 bp. The number of days that the patient received mechanical ventilation, the use of parenteral nutrition, previous treatment with linezolid, and treatment with extended-spectrum cephalosporins for more than 7 days were detected to be independent risk factors for CNSKP acquisition. The VIM-1-producing K. pneumoniae ST15 clone has a high capacity to spread among intensive care unit patients with severe underlying conditions. A high rate of associated mortality and great difficulty in controlling the spread of this clone, without permanent behavioral changes in the personnel, were observed.
The Open Epidemiology Journal, 2009
ABSTRACT Purpose: The present study aimed to confirm by classical and molecular laboratory methods hospital-associated outbreaks due to virulent Klebsiella pneumoniae strains. Methods: Eighty three Klebsiella pneumoniae strains isolated from new-born patients, adults and hospital environment and devices in five hospital units, were analyzed for resistance to antibiotics, including last generation cephalosporins, sensitivity to bacteriophages and pulsed-field gel electrophoresis profiles in order to evaluate the epidemiological relatedness and their clonal spreading. Polymerase chain reaction targeting fur genes and several subtractive sequences (SL 002, SL 003, SL 019, SL 020, SL 021 and SL 025) was used for virulence assessment. Results: More than 50% of strains were resistant to third generation cephalosporins and among them 69% were extended spectrum beta-lactamase producers. Phage typing associated with pulse field gel electrophoresis documented the clonal dispersion of strains. Studying the distribution of virulence sequence, our results reveal that fur gene is present in all strains and among the subtractive sequences the most frequent is SL 020 followed by SL 019. None of the analyzed sequences are present in all clinical isolates and none of the bacterial strains carry all these sequences pointing out the heterogeneity of Klebsiella pneumoniae population. Conclusions: Phage typing method associated with pulse field gel electrophoresis typing and genetic profile for virulence indicated the occurrence of hospital associated-infections produced by Klebsiella pneumoniae strains. Moreover, the results reveal that virulence pattern could be used as a molecular marker in order to define strains which are involved in the process of the development of infectious diseases.
Within-patient and global evolutionary dynamics ofKlebsiella pneumoniaeST17
bioRxiv (Cold Spring Harbor Laboratory), 2022
Klebsiella pneumoniae sequence type (ST) 17 is a global problem clone that causes multidrug-resistant (MDR) hospital infections worldwide. In 2008-2009, an outbreak of MDR ST17 occurred at a neonatal intensive care unit (NICU) in Stavanger, Norway. Fifty-seven children were colonised. We observed intestinal persistence of ST17 in all of the children for up to two years after hospital discharge. Here, we investigated the within-host evolution of ST17 in 45 of those children during long-term colonisation and compared the outbreak with 254 global strains. Ninety-two outbreak-related isolates were whole-genome sequenced. They had capsule locus KL25, O locus O5 and carried yersiniabactin. During within-host colonisation ST17 remained stable with few single nucleotide polymorphisms, no acquisition of antimicrobial resistance (AMR) or virulence determinants, and persistent carriage of a blaCTX-M-15-encoding IncFII(K) IncFIB(K) plasmid (pKp2177_1). The global collection included ST17 from 1993-2020 from 34 countries, that were from human infection (41.3%), colonisation (39.3%) and respiratory specimens (7.3%), from animals (9.3%), and from the environment (2.7%). We estimate that ST17 emerged mid-to-late 19th century (1859, 95% HPD 1763-1939) and diversified through recombinations of the K and O loci to form several sublineages, with various AMR genes, virulence loci and plasmids. There was limited evidence of persistence of AMR genes in any of these lineages. A globally disseminated sublineage with KL25/O5 accounted for 52.7% of the genomes. It included a monophyletic subclade that emerged in the mid-1980s, which comprised the Stavanger NICU outbreak and 10 genomes from three other countries, which all carried pKp2177_1. The plasmid was also observed in a KL155/OL101 subclade from the 2000s. Three clonal expansions of ST17 were identified, all were healthcare-associated and carried either yersiniabactin and/or pKp2177_1. To conclude, ST17 is globally disseminated and associated with opportunistic hospital-acquired infections. It contributes to the burden of global MDR infections, but many diverse lineages persist without acquired AMR. We hypothesise that non-human sources and human colonisation may play a crucial role for severe infections in vulnerable patients, such as preterm neonates. .
Scientific Reports, 2020
Antibiotic-resistant Klebsiella pneumoniae is increasingly being implicated in invasive infections worldwide with high mortalities. Forty-two multidrug resistant (MDR) K. pneumoniae isolates were collected over a 4-month period. Antimicrobial susceptibility was determined using Microscan. The evolutionary epidemiology, resistome, virulome and mobilome of the isolates were characterised using whole-genome sequencing and bioinformatics analysis. All isolates contained the blaCTX-M gene, whilst 41/42(97%) contained blaTEM, 36/42(86%) contained blaOXA and 35/42(83%) harboured blaSHV genes. Other resistance genes found included blaLEN, aac(6′)-lb-cr, qnrA, qnrB, qnrS, oqxAB, aad, aph, dfr, sul1, sul2, fosA, and cat genes. Fluoroquinolone and colistin resistance-conferring mutations in parC, gyrAB, pmrAB, phoPQ and kpnEF were identified. The blaLEN gene, rarely described worldwide, was identified in four isolates. The isolates comprised diverse sequence types, the most common being ST152 in 7/42(17%) isolates; clone-specific O and K capsule types were identified. Diverse virulence genes that were not clone-specific were identified in all but one isolate. IncF, IncH and IncI plasmid replicons and two novel integrons were present. The blaCTX-M-15 and blaTEM-1 genes were bracketed by Tn3 transposons, ISEc9, a resolvase and IS91 insertion sequence. There were 20 gene cassettes in 14 different cassette arrays, with the dfrA and aadA gene cassettes being the most frequent. Phylogenetic analysis demonstrated that the isolates were evolutionarily associated with strains from both South Africa and abroad. These findings depict the rich resistome, mobilome and virulome repertoire in clinical K. pneumoniae strains, which are mainly transmitted by clonal, multiclonal and horizontal means in South Africa.
Pathogens
Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to piperacillin (90.91%), cefuroxime (86.96%), ceftazidime (84.62%), cefotaxime (84.00%), amoxicillin/clavulanate (75%), nalidixic acid (73.68%), and nitrofurantoin (71.43%) antibiotics among K. pneumoniae isolates. The isolates were genetically diverse, consisting of 20 different sequence types (STs) and 34 K-serotype groups. Chromosomal fosA (for fosfomycin) and oqxAB efflux pump genes were detected in all isolates. Two carbapenem resistance genes, blaNDM-5 and blaOXA-181 plus extended-spectrum beta-lactamase (blaCTX-M-15) gene (68.12%), quinolone-resistant genes qnrS1 (28.99%), qnrB1 (13.04%), and qnrB6 (13.04%) and others were found. All, except three of the isolates, harbored plasmids. ...
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 2017
Klebsiella pneumoniae is among the most important pathogens found in hospitals. The emergence of multiple antibiotic resistant K. pneumoniae associated with its virulence factors is a worldwide concern and its early identification is crucial, especially for controlling the spread of emerging clones. This article reports a high prevalence of multiresistant K. pneumoniae in a university hospital in southern Brazil, harboring several virulence and β-lactamase encoding genes, including pandrug-resistant high-risk international clones belonging to the clonal group 258 (ST11, ST15, ST101, ST258, ST340 and ST874).
Scientific Reports, 2016
Klebsiella pneumonia infection rates have increased dramatically. Molecular typing and virulence analysis are powerful tools that can shed light on Klebsiella pneumonia infections. Whereas 77.7% (28/36) of clinical isolates indicated multidrug resistant (MDR) patterns, 50% (18/36) indicated carpabenem resistance. Gene prevalence for the AcrAB efflux pump (82.14%) was more than that of the mdtK efflux pump (32.14%) in the MDR isolates. FimH-1 and mrkD genes were prevalent in wound and blood isolates. FimH-1 gene was prevalent in sputum while mrkD gene was prevalent in urine. Serum resistance associated with outer membrane protein coding gene (traT) was found in all blood isolates. IucC, entB, and Irp-1 were detected in 32.14%, 78.5% and 10.7% of MDR isolates, respectively. We used two Polymerase Chain Reaction (PCR) analyses: Enterobacterial Repetitive Intergenic Consensus (ERIC) and Random Amplified Polymorphic DNA (RAPD). ERIC-PCR revealed 21 and RAPD-PCR revealed 18 distinct patterns of isolates with similarity ≥80%. ERIC genotyping significantly correlated with resistance patterns and virulence determinants. RAPD genotyping significantly correlated with resistance patterns but not with virulence determinants. Both RAPD and ERIC genotyping methods had no correlation with the capsule types. These findings can help up better predict MDR Klebsiella pneumoniae outbreaks associated with specific genotyping patterns.