The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges (original) (raw)

Different modes of electron heating in dual-frequency capacitively coupled radio frequency discharges

Plasma Sources Science and Technology, 2009

A systematic study of different modes of electron heating in dual-frequency capacitively coupled radio frequency (CCRF) discharges is performed using a particle-in-cell simulation. Spatio-temporal distributions of the total excitation/ionization rates under variation of gas pressure, applied frequencies and gas species are discussed. Some results are compared qualitatively with an experiment (phase resolved optical emission spectroscopy) operated under conditions similar to a parameter set used in the simulation. Different modes of electron heating are identified and compared with α-and γ -mode operation of single-frequency CCRF discharges. In this context the frequency coupling and its relation to the ion density profile in the sheath are discussed and quantified. In light gases the ion density in the sheath is time modulated. This temporal modulation is well described by an analytical model and is found to affect the excitation dynamics via the frequency coupling. It is shown that the frequency coupling strongly affects the generation of beams of highly energetic electrons by the expanding sheath and field reversals caused by the collapsing sheath. The role of secondary electrons at intermediate and high pressures is clarified and the transition from α-to γ -mode operation is discussed. Depending on the gas and the corresponding cross sections for excitation/ionization the excitation does not generally probe the ionization as is usually assumed.

Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

Plasma Physics and Controlled Fusion, 2012

Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. 'Classical' dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach.

Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas

Physics of Plasmas, 2013

Transition between breakdown regimes in a temperature-dependent mixture of argon and mercury using 100kHz excitation J. Appl. Phys. 113, 043308 (2013) Merging of high speed argon plasma jets Phys. Plasmas 20, 012704 (2013) Design and validation of the ball-pen probe for measurements in a low-temperature magnetized plasma Rev. Sci. Instrum. 84, 013505 (2013) Effect of multiple scattering on Cerenkov radiation from energetic electrons Phys. Plasmas 20, 013302 Current density distributions and sputter marks in electron cyclotron resonance ion sources Rev. Sci. Instrum. 84, 013303 (2013) Additional information on Phys. Plasmas

Theoretical and Experimental Investigation of the Plasma Source with Argon RF Barrier Discharge at Atmospheric Pressure

2014

Glow characteristics of capacitive radio frequency discharge with isolated electrodes in atmospheric pressure argon in low-current and high-current modes are determined experimentally and calculated by the hybrid hydrodynamic model. Comparative analysis of obtained experimental data and simulated spatio-temporal distributions of concentrations of discharge plasma electrons and heavy species, mean energy of electrons in the RF barrier discharge enabled interpretation of the discharge structure peculiarities in low-current α, α-γ transition and high-current γ modes.

Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures

Journal of Physics D: Applied Physics, 2008

The generation of directed energetic electrons by the expanding sheath is observed in asymmetric capacitively coupled radio frequency discharges at low pressures ( 1 Pa) in different gases. The phenomenon of such electron beams is investigated by a combination of experimental diagnostics, an analytical model and simulations. At sufficiently low pressures multiple reflections of electron beams at the plasma boundaries are observed. An analytical model shows how these beams lead to an enhanced high energy tail of the electron energy distribution function. Thus, stochastic heating is closely related to electron beams.

Investigating the effects of electron bounce-cyclotron resonance on plasma dynamics in capacitive discharges operated in the presence of a weak transverse magnetic field

Physics of Plasmas

Recently, Patil et al. [Phys. Rev. Res. 4, 013059 (2022)] have reported the existence of an enhanced operating regime when a low-pressure (5 mTorr) capacitively coupled discharge (CCP) is driven by a very high radio frequency (60 MHz) source in the presence of a weak external magnetic field applied parallel to its electrodes. Their particle-in-cell simulations show that a significantly higher bulk plasma density and ion flux can be achieved at the electrode when the electron cyclotron frequency equals half of the applied radio frequency for a given fixed voltage. In the present work, we take a detailed look at this phenomenon and further delineate the effect of this “electron bounce-cyclotron resonance (EBCR)” on the electron and ion dynamics of the system. We find that the ionization collision rate and stochastic heating are maximum under resonance condition. The electron energy distribution function also indicates that the population of tail-end electrons is highest for the case w...

Electric field non-linearity in very high frequency capacitive discharges at constant electron plasma frequency

2019

A self-consistent particle-in-cell simulation study is performed to investigate the effect of driving frequency on the electric field non-linearity, electron heating mechanism and electron energy distribution function (EEDF) in a low pressure symmetric capacitively coupled plasma (CCP) discharge at a constant electron plasma frequency. The driving frequency is varied from 27.12 MHz to 100 MHz for a discharge gap of 3.2 cm in argon at a gas pressure of 1 Pa. The simulation results provide insight of higher harmonic generations in a CCP system for a constant electron response time. The spatio-temporal evolution and spatial time averaged electron heating is presented for different driving frequencies. The simulation results predict that the electric field non-linearity increases with a rise in driving frequency along with a concurrent increase in higher harmonic contents. In addition to the electron heating and cooling near to the sheath edge a positive <J.E> is observed in to th...

About the EDF formation in a capacitively coupled argon plasma

Plasma Sources Science and Technology, 2006

The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

Numerical Studies of the Low Pressure RF Plasma

ANU, 1990

A one-dimensional, electrostatic particle-in-cell code with non-periodic boundary conditions is used to simulate a low pressure capacitive rf plasma created between two planar electrodes. Ion and electron motion is included and ionising collisions by energetic electrons allow a steady state to be reached and maintained. Realistic values of mi/me are used but there is no attempt to model a real gas and, except for ionisation, no binary collision processes are considered. The simulation plasma is generated by driving one boundary with a sinusoidal rf voltage at a frequency of 10 MHz. The effects of scaling on the steady state, the structure and the impedance of the resulting discharge are investigated. Changes resulting from varying the amplitude of the driving voltage are examined and scaling laws for the plasma potential, electron density and power loss obtained. Sheath heating is shown to be the main electron heating process and power balance is checked. The structure of the rf sheath obtained in the simulation is compared to theoretical models of both the current driven and the voltage driven sheath. Disagreement in the maximum sheath width between the simulation and the model is ascribed to neglect of the period of sheath collapse and the use of an idealised electron density profile in the model. Sheath scaling is shown to underlie the variation of electron density and temperature with rf voltage. The electron sheath interaction is examined and found to differ considerably from current theoretical models. In the range of parameters investigated, it is essential to consider the distortion of the electron velocity distribution in the sheath. A beam-like distribution is observed when the sheath velocity changes rapidly near the time of sheath collapse and an instability develops when electrons are accelerated into the plasma as the sheath expands.