Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins (original) (raw)
Abstract
O ver 100 years have passed since the first attempts to form amide bonds using simple starting materials. Despite this, great efforts are still being invested to develop new methods of efficiently forming amide bonds at low cost using environmentally friendly reagents 1. Synthesis of short peptide sequences (20-40 amino acids (AA)) is considered a relatively straightforward process with some exceptions such as amyloid β-peptides, transmembrane peptides and amphiphilic peptides. These difficult peptide sequences require special coupling reagents and synthetic strategies to achieve efficient synthesis. The relative ease by which essentially any short tailored peptide can be synthesized by applying solid-phase peptide synthesis (SPPS) has arisen from the continuous development of a wide variety of excellent coupling reagents, resins with better physical properties, novel linkers and orthogonal protecting groups 2. Improvement in chromatographic methods and analytical instrumentation for purification and characterization has also simplified the process of synthesizing peptides. The high efficiency of peptide synthesis coupled with automation has greatly expanded the use of peptides in several research areas, such as nanotechnology, drug discovery and total chemical synthesis of proteins. Chemical protein synthesis, which relies on chemoselective peptide ligation methods, such as native chemical ligation (NCL) 3 , offers complete control of the atomic composition of the polypeptide sequence, making it advantageous over molecular biology approaches in some areas of research (Fig. 1) 4. For example, it enables the incorporation of post-translational modifications (PTMs) into proteins with high homogeneity and in usable quantities, which can enable the role of these modifications on the protein structure and function to be examined. This method for the production of posttranslationally modified proteins has generated immense interests among many groups who have prepared, for example, glycosylated, phosphorylated and ubiquitinated proteins that have enabled otherwise difficult studies 5. Another exciting aspect of chemical protein synthesis is the ability to prepare mirror-image proteins, which are increasingly finding impressive applications in drug discovery 6 and protein crystallography 7 .
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (102)
- Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471-479 (2011).
- Kent, S. B. Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57, 957-989 (1988).
- Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776-779 (1994).
- Hackenberger, C. P. & Schwarzer, D. Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 47, 10030-10074 (2008).
- Siman, P. & Brik, A. Chemical and semisynthesis of posttranslationally modified proteins. Org. Biomol. Chem. 10, 5684-5697 (2012).
- Mandal, K. et al. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779-14784 (2012).
- Yeates, T. O. & Kent, S. B. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41-61 (2012).
- Muir, T. W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249-289 (2003).
- Durek, T. & Becker, C. F. W. Protein semi-synthesis: new proteins for functional and structural studies. Biomol. Eng. 22, 153-172 (2005).
- Johnson, E. C. & Kent, S. B. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640-6646 (2006).
- Bang, D., Pentelute, B. L. & Kent, S. B. H. Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 45, 3985-3988 (2006).
- Schnolzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S. B. H. In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int. J. Pept. Res. Ther. 13, 31-44 (2007).
- Kang, J. & Macmillan, D. Peptide and protein thioester synthesis via N→S acyl transfer. Org. Biomol. Chem. 8, 1993-2002 (2010).
- Zheng, J. S., Tang, S., Huang, Y. C. & Liu, L. Development of new thioester equivalents for protein chemical synthesis. Acc. Chem. Res. 46, 2475-2484 (2013).
- Blanco-Canosa, J. B. & Dawson, P. E. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 47, 6851-6855 (2008).
- Mahto, S. K., Howard, C. J., Shimko, J. C. & Ottesen, J. J. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. ChemBioChem 12, 2488-2494 (2011).
- Blanco-Canosa, J. B., Nardone, B., Albericio, F. & Dawson, P. E. Chemical protein synthesis using a second generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 137, 7197-7209 (2015).
- Wang, P., Layfield, R., Landon, M., Mayer, R. J. & Ramage, R. Transfer active ester condensation: a novel technique for peptide segment coupling. Tetrahedron Lett. 39, 8711-8714 (1998).
- Fang, G. M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50, 7645-7649 (2011).
- Siman, P., Karthikeyan, S. V., Nikolov, M., Fischle, W. & Brik, A. Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew. Chem. Int. Ed. 52, 8059-8063 (2013).
- Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679-11684 (2014).
- Fang, G. M., Wang, J. X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 51, 10347-10350 (2012).
- Hemantha, H. P. et al. Nonenzymatic polyubiquitination of expressed proteins. J. Am. Chem. Soc. 136, 2665-2673 (2014).
- Shema-Yaacoby, E. et al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep. 4, 601-608 (2013).
- Ackrill, T., Anderson, D. W. & Macmillan, D. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N→S acyl shift. Biopolymers 94, 495-503 (2010).
- Raibaut, L., Ollivier, N. & Melnyk, O. Sequential native peptide ligation strategies for total chemical protein synthesis. Chem. Soc. Rev. 41, 7001-7015 (2012).
- Tsuda, S., Shigenaga, A., Bando, K. & Otaka, A. N→S Acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives. Org. Lett. 11, 823-826 (2009).
- Hojo, H., Onuma, Y., Akimoto, Y., Nakahara, Y. & Nakahara, Y. N-alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett. 48, 25-28 (2007).
- Erlich, L. A., Kumar, K. S. A., Haj-Yahya, M., Dawson, P. E. & Brik, A. N-Methylcysteine-mediated total chemical synthesis of ubiquitin thioester. Org. Biomol. Chem. 8, 2392-2396 (2010).
- Sato, K. et al. Chemical synthesis of biologically active monoglycosylated GM2-activator protein analogue using N-sulfanylethylanilide peptide. Angew. Chem. Int. Ed. 52, 7855-7859 (2013).
- Kumar, K. S. et al. Total chemical synthesis of a 304 amino acid K48-linked tetraubiquitin protein. Angew. Chem. Int. Ed. 50, 6137-6141 (2011).
- Bavikar, S. N. et al. Chemical synthesis of ubiquitinated peptides with varying lengths and types of ubiquitin chains to explore the activity of deubiquitinases. Angew. Chem. Int. Ed. 51, 758-763 (2012).
- Ollivier, N., Dheur, J., Mhidia, R., Blanpain, A. & Melnyk, O. Bis(2-sulfanylethyl)amino native peptide ligation. Org. Lett. 12, 5238-5241 (2010).
- Hou, W., Zhang, X. H., Li, F. P. & Liu, C. F. Peptidyl N,N-bis(2-mercaptoethyl)- amides as thioester precursors for native chemical ligation. Org. Lett. 13, 386-389 (2011).
- Boll, E. et al. A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chem. Sci. 5, 2017-2022 (2014).
- Low, D. W., Hill, M. G., Carrasco, M. R., Kent, S. B. H. & Botti, P. Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary. Proc. Natl Acad. Sci. USA 98, 6554-6559 (2001).
- Offer, J., Boddy, C. N. C. & Dawson, P. E. Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 124, 4642-4646 (2002).
- Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526-533 (2001).
- Dawson, P. E. Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Isr. J. Chem. 51, 862-867 (2011).
- Malins, L. R. & Payne, R. J. Synthetic amino acids for applications in peptide ligation-desulfurization chemistry. Aust. J. Chem. 68, 521-537 (2015).
- Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248-9252 (2007).
- Fauvet, B., Butterfield, S. M., Fuks, J., Brik, A. & Lashuel, H. A. One-pot total chemical synthesis of human α-synuclein. Chem. Commun. 49, 9254-9256 (2013).
- Li, J. F. et al. Chemistry as an expanding resource in protein science: fully synthetic and fully active human parathyroid hormone-related protein (1-141). Angew. Chem. Int. Ed. 51, 12263-12267 (2012).
- Creech, G. S., Paresi, C., Li, Y. M. & Danishefsky, S. J. Chemical synthesis of the ATAD2 bromodomain. Proc. Natl Acad. Sci. USA 111, 2891-2896 (2014).
- Sakamoto, I. et al. Chemical synthesis of homogeneous human glycosyl-interferon-β that exhibits potent antitumor activity in vivo. J. Am. Chem. Soc. 134, 5428-5431 (2012).
- Liu, S. H., Pentelute, B. L. & Kent, S. B. H. Convergent chemical synthesis of [lysine 24, 38, 83 ] human erythropoietin. Angew. Chem. Int. Ed. 51, 993-999 (2012).
- Wang, P. et al. At last: erythropoietin as a single glycoform. Angew. Chem. Int. Ed. 51, 11576-11584 (2012).
- Murakami, M., Okamoto, R., Izumi, M. & Kajihara, Y. Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew. Chem. Int. Ed. 51, 3567-3572 (2012).
- Wilson, R. M., Dong, S. W., Wang, P. & Danishefsky, S. J. The winding pathway to erythropoietin along the chemistry-biology frontier: a success at last. Angew. Chem. Int. Ed. 52, 7646-7665 (2013).
- Wang, P. et al. Erythropoietin derived by chemical synthesis. Science 342, 1357-1360 (2013).
- Kochendoerfer, G. G. et al. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299, 884-887 (2003).
- Kumar, K. S. A., Haj-Yahya, M., Olschewski, D., Lashuel, H. A. & Brik, A. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 48, 8090-8094 (2009).
- Spasser, L. & Brik, A. Chemistry and biology of the ubiquitin signal. Angew. Chem. Int. Ed. 51, 6840-6862 (2012).
- Hendrickson, J. B. Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439-5450 (1977).
- Wang, J. X. et al. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis. Angew. Chem. Int. Ed. 54, 2194-2198 (2015).
- Bang, D. & Kent, S. B. H. A one-pot total synthesis of crambin. Angew. Chem. Int. Ed. 43, 2534-2538 (2004).
- Torbeev, V. Y. & Kent, S. B. H. Convergent chemical synthesis and crystal structure of a 203 amino acid "covalent dimer" HIV-1 protease enzyme molecule. Angew. Chem. Int. Ed. 46, 1667-1670 (2007).
- Torbeev, V. Y. et al. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc. Natl Acad. Sci. USA 108, 20982-20987 (2011).
- Torbeev, V. Y. & Kent, S. B. H. Ionization state of the catalytic dyad Asp25/25ʹ in the HIV-1 protease: NMR studies of site-specifically 13 C labelled HIV-1 protease prepared by total chemical synthesis. Org. Biomol. Chem. 10, 5887-5891 (2012).
- Seenaiah, M., Jbara, M., Mali, S. M. & Brik, A. Convergent versus sequential protein synthesis: the case of ubiquitinated and glycosylated H2B. Angew. Chem. Int. Ed. 54, 12374-12378 (2015).
- Rauk, A., Yu, D. & Armstrong, D. A. Oxidative damage to and by cysteine in proteins: an ab initio study of the radical structures, C-H, S-H, and C-C bond dissociation energies, and transition structures for H abstraction by thiyl radicals. J. Am. Chem. Soc. 120, 8848-8855 (1998).
- Siman, P. et al. Chemical synthesis and expression of the HIV-1 Rev protein. Chembiochem 12, 1097-1104 (2011).
- Moyal, T., Hemantha, H. P., Siman, P., Refua, M. & Brik, A. Highly efficient one-pot ligation and desulfurization. Chem. Sci. 4, 2496-2501 (2013).
- Thompson, R. E. et al. Trifluoroethanethiol: an additive for efficient one-pot peptide ligation-desulfurization chemistry. J. Am. Chem. Soc. 136, 8161-8164 (2014).
- Schmalisch, J. & Seitz, O. Acceleration of thiol additive-free native chemical ligation by intramolecular S→S acyl transfer. Chem. Commun. 51, 7554-7557 (2015).
- Reimann, O., Smet-Nocca, C. & Hackenberger, C. P. Traceless purification and desulfurization of tau protein ligation products. Angew. Chem. Int. Ed. 54, 306-310 (2015).
- Bondalapati, S. et al. Chemical synthesis of phosphorylated ubiquitin and diubiquitin exposes positional sensitivities of E1-E2 enzymes and deubiquitinases. Chem. Eur. J. 21, 7360-7364 (2015).
- Canne, L. E. et al. Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720-8727 (1999).
- Brik, A., Keinan, E. & Dawson, P. E. Protein synthesis by solid-phase chemical ligation using a safety catch linker. J. Org. Chem. 65, 3829-3835 (2000).
- Aucagne, V. et al. Towards the simplification of protein synthesis: iterative solid-supported ligations with concomitant purifications. Angew. Chem. Int. Ed. 51, 11320-11324 (2012).
- Raibaut, L. et al. Highly efficient solid phase synthesis of large polypeptides by iterative ligations of bis(2-sulfanylethyl)amido (SEA) peptide segments. Chem. Sci. 4, 4061-4066 (2013).
- Jbara, M., Seenaiah, M. & Brik, A. Solid phase chemical ligation employing a rink amide linker for the synthesis of histone H2B protein. Chem. Commun. 50, 12534-12537 (2014).
- Tornoe, C. W. Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057-3064 (2002).
- Nguyen, U. T. T. et al. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nature Methods 11, 834-840 (2014).
- Ryadnov, M. G. & Woolfson, D. N. Self-assembled templates for polypeptide synthesis. J. Am. Chem. Soc. 129, 14074-14081 (2007).
- Moyal, T., Bavikar, S. N., Karthikeyan, S. V., Hemantha, H. P. & Brik, A. Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions. J. Am. Chem. Soc. 134, 16085-16092 (2012).
- Wilkinson, B. L. et al. Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins. Angew. Chem. Int. Ed. 51, 3606-3610 (2012).
- Tachibana, Y. et al. Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew. Chem. Int. Ed. 43, 856-862 (2004).
- Saxon, E., Armstrong, J. I. & Bertozzi, C. R. A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141-2143 (2000).
- Nilsson, B. L., Kiessling, L. L. & Raines, R. T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939-1941 (2000).
- Saito, F., Noda, H. & Bode, J. W. Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water. ACS Chem. Biol. 10, 1026-1033 (2015).
- Zhang, Y. F., Xu, C., Lam, H. Y., Lee, C. L. & Li, X. C. Protein chemical synthesis by serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657-6662 (2013).
- Bode, J. W., Fox, R. M. & Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew. Chem. Int. Ed. 45, 1248-1252 (2006).
- Wucherpfennig, T. G., Pattabiraman, V. R., Limberg, F. R., Ruiz-Rodriguez, J. & Bode, J. W. Traceless preparation of C-terminal α-ketoacids for chemical protein synthesis by α-ketoacid-hydroxylamine ligation: synthesis of SUMO2/3. Angew. Chem. Int. Ed. 53, 12248-12252 (2014).
- Pusterla, I. & Bode, J. W. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nature Chem. 7, 668-672 (2015).
- Noda, H., Eros, G. & Bode, J. W. Rapid ligations with equimolar reactants in water with the potassium acyltrifluoroborate (KAT) amide formation. J. Am. Chem. Soc. 136, 5611-5614 (2014).
- Ohayon, S., Spasser, L., Aharoni, A. & Brik, A. Targeting deubiquitinases enabled by chemical synthesis of proteins. J. Am. Chem. Soc. 134, 3281-3289 (2012).
- Wintermann, F. & Engelbrecht, S. Reconstitution of the Catalytic Core of F-ATPase (αβ) 3 γ from Escherichia coli using chemically synthesized subunit γ. Angew. Chem. Int. Ed. 52, 1309-1313 (2013).
- Simon, M. D. et al. Rapid flow-based peptide synthesis. ChemBioChem 15, 713-720 (2014).
- Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705 (2007).
- Dheur, J., Ollivier, N. & Melnyk, O. Synthesis of thiazolidine thioester peptides and acceleration of native chemical ligation. Org. Lett. 13, 1560-1563 (2011).
- Durek, T. & Alewood, P. F. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew. Chem. Int. Ed. 50, 12042-12045 (2011).
- Metanis, N., Keinan, E. & Dawson, P. E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 49, 7049-7053 (2010).
- Mitchell, N. J. et al. Rapid additive-free selenocystine-selenoester peptide ligation. J. Am. Chem. Soc. 137, 14011-14014 (2015).
- Malins, L. R., Mitchell, N. J., McGowan, S. & Payne, R. J. Oxidative deselenization of selenocysteine: applications for programmed ligation at serine. Angew. Chem. Int. Ed. 54, 12716-12721 (2015).
- Dery, S. et al. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci 6, 6207-6212 (2015).
- Lahiri, S., Brehs, M., Olschewski, D. & Becker, C. F. W. Total chemical synthesis of an integral membrane enzyme: diacylglycerol kinase from Escherichia coli. Angew. Chem. Int. Ed. 50, 3988-3992 (2011).
- Zheng, J. S. et al. Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J. Am. Chem. Soc. 136, 3695-3704 (2014).
- Johnson, E. C. B. et al. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease. J. Am. Chem. Soc. 129, 11480-11490 (2007).
- Asahina, Y. et al. Chemical synthesis of O-glycosylated human interleukin-2 by the reverse polarity protection strategy. Angew. Chem. Int. Ed. 54, 8226-8230 (2015).
- Rabideau, A. E., Liao, X. L. & Pentelute, B. L. Delivery of mirror image polypeptides into cells. Chem. Sci. 6, 648-653 (2015).
- David, Y., Vila-Perello, M., Verma, S. & Muir, T. W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nature Chem. 7, 394-402 (2015).