Microwave radiations effect on electrical and mechanical properties of poly (vinyl alcohol) and PVA/graphene nanocomposites (original) (raw)
Abstract
Solution casting technique was used to prepare electrically conductive nanocomposites. Graphene was used as conductive inclusive in the Poly (vinyl alcohol) matrix. Nanocomposites further irradiated using microwave radiation for different interval of time (5, 10 and 15 min). Different characterization techniques were utilized including SEM, XRD and Raman Spectra to completely understand the properties change in non-irradiated and irradiated sample. Increase in electrical conductivity was observed with the increase in graphene percentage. Sample with 10% graphene inclusion exhibited 3.55 S/cm electrical conductivity with comparison to 0.021 S/cm for 1% graphene composite. Percolation threshold was observed for the sample holding 5% graphene with the electrical conductivity value of 2.17 S/cm. Different empirical models were also used to produce the trends for conductivity of composite at different graphene percentages. It was observed that the Scarisbrick model with the 0.1 geometrical factor (C) affirmed the harmonization in theoretical and experimental values of electrical conductivity. Electromagnetic inference shielding effectiveness was perceived for different composite samples using vector network analyzer (VNA). Observations show the increase in EMI shielding with the increase in graphene percentage. Moreover, both electrical conductivity and Electromagnetic inference shielding effectiveness improved after radiation. Due to agglomeration and bi-layered structure domination, tensile properties of composite films were found to be decreased especially at high graphene.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (44)
- V. Goodship, D.K.Jacobs, Polyvinyl alcohol: materials, processing and applications. 2009.
- N. Georgieva, R. Bryaskova, R.Tzoneva, New Polyvinyl Alcohol-Based Hybrid Materials for Biomedical Application. Vol 88.; 2012. doi:10.1016/j.matlet.2012.07.111.
- J. Wang, X. Wang, C. Xu, M. Zhang, X. Shang , Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance, Polym Int. 60 (2011) 816-822. doi:10.1002/pi.3025.
- J.H. Lin, Z.I. Lin, Y.J. Pan, Improvement in Mechanical Properties and Electromagnetic Interference Shielding Effectiveness of PVA-Based Composites: Synergistic Effect Between Graphene Nano-Sheets and Multi-Walled Carbon Nanotubes, Macromol Mater Eng. 301 (2016) 199-211. doi:10.1002/mame.201500314.
- K. Fujimori, M. Gopiraman, H.K. Kim, B.S. Kim, I.S. Kim, Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating. J Nanosci Nanotechnol, 13 (2013) 1759-1764. http://www.ncbi.nlm.nih.gov/pubmed/23755586\. Accessed July 24, 2016.
- K.K. Sadasivuni, D. Ponnamma, J. Kim, S.Thomas, Graphene-based polymer nanocomposites in electronics. Graphene-Based Polym Nanocomposites Electron, 2015:1- 382. doi:10.1007/978-3-319-13875-6.
- V. Dhand, K.Y. Rhee, H.J. Kim, D.H. Jung, A Comprehensive Review of Graphene Nanocomposites : Research Status and Trends. 2017;2013.
- S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat Nanotechnol. 4 (2009) 217-224. doi:10.1038/nnano.2009.58.
- A.K. Geim. Graphene: status and prospects, Science. 324 (2009) 1530-1534. doi:10.1126/science.1158877.
- J. Jose, S.K. De, M.A.A. Ma'adeed,. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend, Starch/Staerke. 67 (2015) 147-153.
- A C C E P T E D M A N U S C R I P T doi:10.1002/star.201400074.
- S. Shang, L. Li, X. Yang, Y.Wei, Polymethylmethacrylate-carbon nanotubes composites prepared by microemulsion polymerization for gas sensor, Compos Sci Technol.69, (2009) 1156-1159. doi:10.1016/j.compscitech.2009.02.013.
- M. Rahaman M, T.K. Chaki, S. Khastgir, Temperature Dependent Electrical Properties of Conductive Composites (Behavior at Cryogenic Temperature and High Temperatures), Adv Mater Res. 123 (2010)447-450. doi:10.4028/www.scientific.net/AMR.123-125.447.
- F. Bueche, Electrical resistivity of conducting particles in an insulating matrix, J Appl Phys. 43 (1972) 4837-4838. doi:10.1063/1.1661034.
- M. Rahaman, T.K. Chaki, D. Khastgir, Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix, Compos Sci Technol. 72 ( 2012) 1575-1580. doi:10.1016/j.compscitech.2012.06.005.
- S. Wen, D.D.L. Chung, Pitch-matrix composites for electrical, electromagnetic and strain- sensing applications, J Mater Sci.40 (2005) 3897-3903. doi:10.1007/s10853-005-0717-5.
- N.C. Das, S. Maiti, Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites, J Mater Sci. 43 (2008) 1920-1925. doi:10.1007/s10853-008- 2458-8.
- J. Liang, Y.Wang, Y. Huang, Electromagnetic interference shielding of graphene/epoxy composites, Carbon N Y 47( 2009) 922-925. doi:10.1016/j.carbon.2008.12.038.
- M.B. Bryning, M.F. Islam, J.M. Kikkawa, A.G.Yodh, Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites, Adv Mater.17 (2005) 1186-1191. doi:10.1002/adma.200401649.
- L. Feng, W. Li, J. Ren, X. Qu Electrochemically and DNA-triggered cell release from ferrocene/β-cyclodextrin and aptamer modified dualfunctionalized graphene substrate, Nano Res.8 (2015) 887-899. doi:10.1007/s12274-014-0570-4.
- D. McIntosh, V.N. Khabashesku, E.V. Barrera, Benzoyl Peroxide Initiated In Situ A C C E P T E D M A N U S C R I P T Functionalization, Processing, and Mechanical Properties of Single-Walled Carbon Nanotube-Polypropylene Composite Fibers, J Phys Chem C. 111 (2007) 1592-1600. doi:10.1021/jp065399d.
- G. Wu, Y. Tang, R. Weng Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly(amic acid) as impurity-free dispersant, Polym Degrad Stab.95 (2010) 1449-1455. doi:10.1016/j.polymdegradstab.2010.06.026.
- A.A. Miller, Effects of high-energy radiation on polymers A. A. Miller. (1):774-781.
- M. Zubair, F. Shehzad, M.A. Al-Harthi, Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly ( styrene-co -methyl meth acrylate ), Thermochim Acta. ,633 (2016) 48-55.
- M. Zubair, J. Jose, M.A. Al-Harthi, Evaluation of mechanical and thermal properties of microwave irradiated poly (styrene-co-methyl methacrylate)/graphene nanocomposites, Compos Interfaces. 22, (2015) 595-610.
- S.P.Pawar, S. Stephen, S. Bose, V. Mittal, Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles, Phys Chem Chem Phys. (2015)14922-14930. doi:10.1039/c5cp00899a.
- E.A. Bursali, S. Coskun, M. Kizil, M. Yurdakoc, Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels, Carbohydr Polym.83 (2011) 1377-1383. doi:10.1016/j.carbpol.2010.09.056.
- C. Thomsen and S. Reich, "Double Resonant Raman Scattering in Graphite," Phys. Rev. Lett., vol. 85, no. 24, pp. 5214-5217, Dec. 2000.
- M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon N. Y., vol. 33, no. 7, pp. 883-891, 1995.
- S. Stankovich et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon N. Y., vol. 45, no. 7, pp. 1558-1565, 2007.
- O. A. Bin-Dahman, M. Rahaman, D. Khastgir, and M. A. Al-Harthi, "Electrical and dielectric properties of poly(vinyl alcohol)/starch/graphene nanocomposites," Can. J.
- G. V. Aldica et al., "Isotactic polypropylene-vapor grown carbon nanofibers composites: Electrical properties," J. Appl. Polym. Sci., vol. 134, no. 38, pp. 1-12, 2017.
- S. P. Pawar, S. Stephen, S. Bose, and V. Mittal, "Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles.," Phys. Chem. Chem. Phys., pp. 14922-14930, 2015.
- W. Weng, G. Chen, D.Wu X. Chen, J. Lu, P. Wang , Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposite, J Polym Sci Part B Polym Phys. 42, (2004) 2844-2856. doi:10.1002/polb.20140.
- F. Bueche, Electrical resistivity of conducting particles in an insulating matrix, J Appl Phys. 43 (1972) 4837. doi:10.1063/1.1661034.
- R.M. Scarisbrick, Electrically conducting mixtures. J Phys D Appl Phys. 6 (1973)2098- 2110.
- N.J.S. Sohi, M. Rahaman D. Khastgir, Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: Effect of different type of carbon fillers, Polym Compos, 32(2011) 1148- 1154. doi:10.1002/pc.21133.
- J. Jose, M.A. Al-Harthi, M.A.A. AlMa'adeed J.B. Dakua , S.K. De, Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend, J Appl Polym Sci.132 ( 2015):1-8. doi:10.1002/app.41827.
- M. Chaharmahali , Y. Hamzeh, G. Ebrahimi, A. Ashori, I. Ghasemi, Effects of nano- graphene on the physico-mechanical properties of bagasse/polypropylene composites, Polym Bull.71 (2014) 337-349. doi:10.1007/s00289-013-1064-3.
- X. Lu, R. Qian, N. Brown, The effect of crystallinity on fracture and yielding of polyethylenes, Polymer (Guildf)36 (1995)4239-4244. doi:10.1016/0032-3861(95)92219- 5.
- D.S. Li, H. Garmestani, R.G. Alamo, S.R. Kalidindi, The role of crystallinity in the crystallographic texture evolution of polyethylenes during tensile deformation, Polymer (Guildf) 44 (2003)5355-5367. doi:10.1016/S0032-3861(03)00527-5.
- J. Jose, M. A. Al-Harthi, M. A. A. AlMa'adeed, J. B. Dakua, and S. K. De, "Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend," J. Appl. Polym. Sci., vol. 132, no. 16, 2015.
- P. A. Sreekumar, M. A. Al-Harthi, M. A. Gondal, and S. K. De, "Heterogeneity of laser- irradiated films of polyvinyl alcohol/starch blends: effect of glycerol content," Surf. Interface Anal., vol. 45, no. 6, pp. 1047-1051, Jun. 2013.
- H. Liu, , T.J. Webster, Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications, Int J Nanomedicine 5 (2010) 299-313. http://www.ncbi.nlm.nih.gov/pubmed/20463945\. Accessed September 3, 2016.