Plant research accelerates along the (bio)informatics superhighway (original) (raw)

Arabidopsis Contains at Least Four Independent Blue-Light-Activated Signal Transduction Pathways

PLANT PHYSIOLOGY, 1999

sis. The stomatal responses of light-grown mutant plants (cry1, cry2, nph1, nph3, nph4, cry1cry2, and nph1cry1) did not differ significantly from those of their wild-type counterparts. Second positive phototropic responses of etiolated mutant seedlings, cry1, cry2, cry1cry2, and npq1-2, were also similar to those of their wild-type counterparts. Although npq1 and single and double cry1cry2 mutants showed somewhat reduced amplitude for first positive phototropism, threshold, peak, and saturation fluence values for first positive phototropic responses of etiolated seedlings did not differ from those of wild-type seedlings. Similar to the cry1cry2 double mutants and to npq1-2, a phyAphyB mutant showed reduced curvature but no change in the position or shape of the fluenceresponse curve. By contrast, the phototropism mutant nph1-5 failed to show phototropic curvature under any of the irradiation conditions used in the present study. We conclude that the chromoproteins cry1, cry2, nph1, and the blue-light photoreceptor for the stomatal response are genetically separable. Moreover, these photoreceptors appear to activate separate signal transduction pathways.

Blue Light Activates a Specific Protein Kinase in Higher Plants

PLANT PHYSIOLOGY, 1992

Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [y-32P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants. 655 www.plantphysiol.org on March 5, 2018 -Published by Downloaded from

Phosphorylation of Phytochrome B Inhibits Light-Induced Signaling via Accelerated Dark Reversion in Arabidopsis

The Plant Cell, 2013

The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red–dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein–protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB–yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photor...

Transduction mechanisms of photoreceptor signals in plant cells

Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009

During a plant life, light is necessary not only as a source of energy, but also as a regulatory factor of plant metabolism with information signal function. In this review we consider basic links of primary stages of light signal transduction in higher plants. The transformation circuits and possible pathways of photoreceptor light signal transduction, as well as possible roles of photoreceptor-interacting proteins, secondary messengers and some transcriptional factors are discussed. The review is also focused on examination of rapid signaling events such as activation of ion exchange systems as well as interaction of photoreceptors in signaling pathways.

Arabidopsis Contains at Least Four Independent Blue-Light-Activated Signal Transduction Pathways1

Plant Physiology, 1999

We have investigated the stomatal and phototropic responses to blue light of a number of single and double mutants at various loci that encode proteins involved in blue-light responses in Arabidopsis. The stomatal responses of light-grown mutant plants (cry1, cry2, nph1, nph3, nph4, cry1cry2, andnph1cry1) did not differ significantly from those of their wild-type counterparts. Second positive phototropic responses of etiolated mutant seedlings, cry1, cry2, cry1cry2, andnpq1-2, were also similar to those of their wild-type counterparts. Although npq1 and single and double cry1cry2 mutants showed somewhat reduced amplitude for first positive phototropism, threshold, peak, and saturation fluence values for first positive phototropic responses of etiolated seedlings did not differ from those of wild-type seedlings. Similar to the cry1cry2 double mutants and tonpq1-2, a phyAphyB mutant showed reduced curvature but no change in the position or shape of the fluence-response curve. By contr...

Structure and Function of Plant Photoreceptors

Annual Review of Plant Biology, 2010

Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental—and as yet imperfectly answered—question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins...

Light perception in higher plants

Cellular and Molecular Life Sciences CMLS, 1999

Photosynthetic plants depend on sunlight as netic and cell biological approaches have significantly increased our knowledge about the structure and func-their energy source. Thus, they need to detect the intention of the photoreceptors, and allowed the identification sity, quality and direction of this critical environmental factor and to respond properly by optimizing their of several light signal transduction components. Furthergrowth and development. Perception of light is accom-more, this research led to fruitful interaction between plished by several photoreceptors including phy-different disciplines, such as molecular biology and ecology. It is safe to assume that we can expect more tochromes, blue/ultraviolet (UV)-A and UV-B light milestones in this research field in the upcoming years. photoreceptors. In recent years, genetic, molecular ge

Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis

The Plant Cell …, 2010

Although light is essential for photosynthesis, excess light can damage the photosynthetic apparatus and deregulate other cellular processes. Thus, protective integrated regulatory responses that can dissipate excess of absorbed light energy and simultaneously optimize photosynthesis and other cellular processes under variable light conditions can prove highly adaptive. Here, we show that the local and systemic responses to an excess light episode are associated with photoelectrophysiological signaling (PEPS) as well as with changes in nonphotochemical quenching and reactive oxygen species levels. During an excess light incident, PEPS is induced by quantum redox changes in photosystem II and in its proximity and/or by changes in glutathione metabolism in chloroplasts. PEPS is transduced, at least in part, by bundle sheath cells and is light wavelength specific. PEPS systemic propagation speed and action potential are dependent on ASCORBATE PEROXIDASE2 function. Excess light episodes are physiologically memorized in leaves, and the cellular light memory effect is specific for an excess of blue (450 nm) and red (650 nm) light of similar energy. It is concluded that plants possess a complex and dynamic light training and memory system that involves quantum redox, reactive oxygen species, hormonal, and PEPS signaling and is used to optimize light acclimation and immune defenses.

Two Photobiological Pathways of Phytochrome A Activity, Only One of Which Shows Dominant Negative Suppression by Phytochrome B

Photochemistry and Photobiology, 2000

The plant receptor phytochrome A (phyA) mediates responses like hypocotyl growth inhibition and cotyledon unfolding that require continuous far-red (FR) light for maximum expression (high-irradiance responses, HIR), and responses like seed germination that can be induced by a single pulse of FR (very-low-fluence responses, VLFR). It is not known whether this duality results from either phyA interaction with different end-point processes or from the intrinsic properties of phyA activity. Etiolated seedlings of Arabidopsis thaliana were exposed to pulses of FR (3 min) separated by dark intervals of different duration. Hypocotyl-growth inhibition and cotyledon unfolding showed two phases. The first phase (VLFR) between 0.17 and 0.5 pulses•h Ϫ1 , a plateau between 0.5 and 2 pulses•h Ϫ1 and a second phase (HIR) at higher frequencies. Reciprocity between fluence rate and duration of FR was observed within phases, not between phases. The fluence rate for half the maximum effect was 0.1 and 3 mol•m Ϫ2 •s Ϫ1 for hourly pulses of FR (VLFR) and continuous FR (HIR), respectively. Overexpression of phytochrome B caused dominant negative suppression under continuous but not under hourly FR. We conclude that phyA is intrinsically able to initiate two discrete photoresponses even when a single end-point process is considered.

Light perception in plant disease defence signalling

Current Opinion in Plant Biology, 2003

Light is a predominant factor in the control of plant growth, development and stress responses. Many biotic stress responses in plants are therefore specifically adjusted by the prevailing light conditions. The plant cell is equipped with sophisticated light-sensing mechanisms that are localised inside and outside of the chloroplast and the nucleus. Recent progress has provided models of how the signalling