LncRNAs in Cancer: another layer of complexity (original) (raw)

Clinical Analysis of Long Non-coding RNA (LncRNA): Therapeutic Targeting of Tumorigenesis and Tumor Disease

Long non-coding RNAs (lncRNAs) are a group of longer than 200 nucleotides which are the largest and more diverse transcripts in the cells. After study from Functional Annotation of Mammalian cDNA, lncRNAs demonstrated some special characteristics such as lower quantity, higher tissue-specificity, higher stage specificity and higher cell subtype specificity. The current evidence from tumor diseases suggests that lncRNAs are an important regulatory RNA present at tumor cells, and therefore their alterations are associated with tumorigenesis and tumor diseases. Here we presented a clinical landscape of lncRNA including detection of lncRNA and their clinical application such as diagnosis biomarkers and therapeutic targets. We also discussed the challenges and resolving strategies for these clinical applications.

lncRNAs in Hallmarks of Cancer and Clinical Applications

Non-Coding RNAs [Working Title], 2019

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides in length that, in general, do not appear to have protein-coding potential. lncRNAs act in gene regulation involved with several biological processes. Furthermore, lncRNAs have been associated with a significant number of cancers, suggesting a potential role in tumorigenesis and progression. For example, HOTAIR regulates proliferation processes and other lncRNAs like highly upregulated in liver cancer (HULC), H19, PTENP1, HEIH, and antisense noncoding RNA in the INK4 locus (ANRIL). Other lncRNAs as AFAP1-AS1 and lincRNA-p21 can interact with BCL-2 and TP53, acting in apoptosis. Moreover, NORAD plays a vital role in genomic stability. Additionally, due to deregulated expression and high tissue specificity level, lncRNAs exhibit great potential as prognostic markers. In this chapter, we review the most highlighted lncRNAs acting in hallmarks of cancer and clinical application.

Clinical Analysis of Long Non-coding RNA (LncRNA) Therapeutic Targeting of Tumorigenesis.pdf

Long non-coding RNAs (lncRNAs) are a group of longer than 200 nucleotides which are the largest and more diverse transcripts in the cells. After study from Functional Annotation of Mammalian cDNA, lncRNAs demonstrated some special characteristics such as lower quantity, higher tissue-specificity, higher stage specificity and higher cell subtype specificity. The current evidence from tumor diseases suggests that lncRNAs are an important regulatory RNA present at tumor cells, and therefore their alterations are associated with tumorigenesis and tumor diseases. Here we presented a clinical landscape of lncRNA including detection of lncRNA and their clinical application such as diagnosis biomarkers and therapeutic targets. We also discussed the challenges and resolving strategies for these clinical applications.

Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer

International journal of molecular sciences, 2017

The importance of long non-coding RNAs (lncRNAs) in the pathogenesis of various malignancies has been uncovered over the last few years. Their dysregulation often contributes to or is a result of tumour progression. In prostate cancer, the most common malignancy in men, lncRNAs can promote castration resistance, cell proliferation, invasion, and metastatic spread. Expression patterns of lncRNAs often change during tumour progression; their expression levels may constantly rise (e.g., HOX transcript antisense RNA, HOTAIR), or steadily decrease (e.g., downregulated RNA in cancer, DRAIC). In prostate cancer, lncRNAs likewise have diagnostic (e.g., prostate cancer antigen 3, PCA3), prognostic (e.g., second chromosome locus associated with prostate-1, SChLAP1), and predictive (e.g., metastasis-associated lung adenocarcinoma transcript-1, MALAT-1) functions. Considering their dynamic role in prostate cancer, lncRNAs may also serve as therapeutic targets, helping to prevent development of ...

Emerging role of lncRNA in cancer: a potential avenue in molecular medicine

Annals of Translational Medicine, 2016

Hepatocellular carcinoma (HCC) accounts for the second largest number of cancer related deaths globally with limited management options for the advanced disease. Although substantial research has identified molecular targets, with strong validation in pre-clinical in vivo studies, translation of therapeutics to clinics has shown modest success. In a recent manuscript in Hepatology, Zhou and Yang et al. unravel a novel p53 associated long noncoding RNA (PRAL) as a potential prognostic marker and molecular target in HCC. Their work provides a promising approach at capitalizing the tumor suppressive role of p53 protein in fighting HCC. More importantly, it emphasizes the evolving significance of long non-coding RNAs (lncRNA) in molecular medicine. Current research trends focus on identifying and understanding roles of lncRNA in regulation of gene expression relevant to multiple disease pathophysiologies thereby presenting a new avenue of research in molecular and translational medicine.

Long non-coding RNAs as key regulators of cancer metastasis

Journal of Cancer Metastasis and Treatment

The recent advances in functional genomics have discovered that a large number of long non-coding RNAs (lncRNAs) are pervasively transcribed from the human genome. Increasing evidence further indicates that lncRNAs are important for gene expression during cell differentiation and development through various mechanisms such as nuclear organization, post-transcription regulation, alternative splicing, and epigenetic regulation. Thus, aberrant expression of lncRNAs can cause abnormality in those cellular functions and lead to various pathological conditions. One of such fatal consequences is cancer metastasis which is responsible for more than 90% of cancerrelated deaths. A good understanding of how lncRNAs regulate different genetic and epigenetic changes during different stages of cancer metastasis is important not only for general cancer biology but also for identification of novel biomarkers and therapeutic targets for treatment of metastatic cancer. A significant progress has been made regarding the role of lncRNAs in cancer for past several years. In this study, we first discuss general functions of lncRNAs and then highlight recent findings of how lncRNAs impact cancer metastasis, and finally we provide our perspectives on clinical implications of lncRNAs.

Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis

Communications Biology, 2020

Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.

Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer

Genomics, Proteomics & Bioinformatics, 2016

Long non-coding RNAs (lncRNAs) play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based mechanisms and via cross-talk with other RNA species. lncRNAs can function as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identifying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.

Long non-coding RNAs in prostate cancer: Biological and clinical implications

Molecular and Cellular Endocrinology, 2018

Prostate cancer (PCa) is a major health issue in the Western world. Current clinical imperatives for this disease include better stratification of indolent versus aggressive disease to enable improved patient management, as well as the identification of more effective therapies for the prevention and treatment of metastatic and therapy-resistant PCa. The advent of next-generation transcriptomics led to the identification of an important class of molecules, long non-coding RNAs (lncRNAs). LncRNAs have critical functions in normal physiology, but their dysregulation has also been implicated in the development and progression of a variety of cancers, including PCa. Importantly, a subset of lncRNAs are highly prostate-specific, suggesting potential for utility as both biomarkers and therapeutic targets. In this review, we summarise the biology of lncRNAs and their mechanisms of action in the development and progression of prostate cancer. Additionally, we cast a critical eye over the potential for this class of molecules to impact on clinical practice.

A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions

In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgendeprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their