An optimization-based approach for the design of Bayesian networks (original) (raw)
2008, Mathematical and Computer Modelling
Bayesian networks model conditional dependencies among the domain variables, and provide a way to deduce their interrelationships as well as a method for the classification of new instances. One of the most challenging problems in using Bayesian networks, in the absence of a domain expert who can dictate the model, is inducing the structure of the network from a large, multivariate data set. We propose a new methodology for the design of the structure of a Bayesian network based on concepts of graph theory and nonlinear integer optimization techniques.