Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning (original) (raw)

Deep learning Parkinson's from smartphone data

2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2017

The cloudUPDRS app is a Class I medical device, namely an active transient non-invasive instrument, certified by the Medicines and Healthcare products Regulatory Agency in the UK for the clinical assessment of the motor symptoms of Parkinson's Disease. The app follows closely the Unified Parkinson's Disease Rating Scale which is the most commonly used protocol in the clinical study of PD; can be used by patients and their carers at home or in the community; and, requires the user to perform a sequence of iterated movements which are recorded by the phone sensors. This paper discusses how the cloudUPDRS system addresses two key challenges towards meeting essential consistency and efficiency requirements, namely: (i) How to ensure high-quality data collection especially considering the unsupervised nature of the test, in particular, how to achieve firm user adherence to the prescribed movements; and (ii) How to reduce test duration from approximately 25 minutes typically required by an experienced patient, to below 4 minutes, a threshold identified as critical to obtain significant improvements in clinical compliance. To address the former, we combine a bespoke design of the user experience tailored so as to constrain context, with a deep learning approach used to identify failures to follow the movement protocol while at the same time limiting false positives to avoid unnecessary repetition. We address the latter by developing a machine learning approach to personalise assessments by selecting those elements of the UPDRS protocol that most closely match individual symptom profiles and thus offer the highest inferential power hence closely estimating the patent's overall UPRDS score. • Personalised tests reducing the time required to carry out an assessment to less than 4 minutes. These so-called quick tests are created using machine learning to select a subset of UPDRS observations that closely estimate the motor performance of a particular patient.

A Deep Learning Approach for Automatic and Objective Grading of the Motor Impairment Severity in Parkinson’s Disease for Use in Tele-Assessments

Sensors

Wearable sensors provide a tool for at-home monitoring of motor impairment progression in neurological conditions such as Parkinson’s disease (PD). This study examined the ability of deep learning approaches to grade the motor impairment severity in a modified version of the Movement Disorders Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) using low-cost wearable sensors. We hypothesized that expanding training datasets with motion data from healthy older adults (HOAs) and initializing classifiers with weights learned from unsupervised pre-training would lead to an improvement in performance when classifying lower vs. higher motor impairment relative to a baseline deep learning model (XceptionTime). This study evaluated the change in classification performance after using expanded training datasets with HOAs and transferring weights from unsupervised pre-training compared to a baseline deep learning model (XceptionTime) using both upper extrem...

Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021)

Sensors

Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting over 6 million people globally. Although there are symptomatic treatments that can increase the survivability of the disease, there are no curative treatments. The prevalence of PD and disability-adjusted life years continue to increase steadily, leading to a growing burden on patients, their families, society and the economy. Dopaminergic medications can significantly slow down the progression of PD when applied during the early stages. However, these treatments often become less effective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform automa...

Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease

Scientific reports, 2018

Parkinson's disease (PD) is a degenerative movement disorder causing progressive disability that severely affects patients' quality of life. While early treatment can produce significant benefits for patients, the mildness of many early signs combined with the lack of accessible high-frequency monitoring tools may delay clinical diagnosis. To meet this need, user interaction data from consumer technologies have recently been exploited towards unsupervised screening for PD symptoms in daily life. Similarly, this work proposes a method for detecting fine motor skills decline in early PD patients via analysis of patterns emerging from finger interaction with touchscreen smartphones during natural typing. Our approach relies on low-/higher-order statistical features of keystrokes timing and pressure variables, computed from short typing sessions. Features are fed into a two-stage multi-model classification pipeline that reaches a decision on the subject's status (PD patient/...

Unobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniques

Scientific Reports

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder, affecting more than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of PD symptoms. In fact, evidence suggests that early PD intervention has the potential to slow down symptom progression and improve the general quality of life in the long term. However, the initial motor symptoms are usually very subtle and, as a result, patients seek medical assistance only when their condition has substantially deteriorated; thus, missing the opportunity for an improved clinical outcome. This situation highlights the need for accessible tools that can screen for early motor PD symptoms and alert individuals to act accordingly. Here we show that PD and its motor symptoms can unobtrusively be detected from the combination of accelerometer and touchscreen typing data that are passiv...

Multimodal assessment of Parkinson's disease: a deep learning approach

IEEE journal of biomedical and health informatics, 2018

Parkinson's disease is a neurodegenerative disorder characterized by a variety of motor symptoms. Particularly, difficulties to start/stop movements have been observed in patients. From a technical/diagnostic point of view, these movement changes can be assessed by modeling the transitions between voiced and unvoiced segments in speech, the movement when the patient starts or stops a new stroke in handwriting, or the movement when the patient starts or stops the walking process. This study proposes a methodology to model such difficulties to start or to stop movements considering information from speech, handwriting, and gait. We used those transitions to train convolutional neural networks to classify patients and healthy subjects. The neurological state of the patients was also evaluated according to different stages of the disease (initial, intermediate, and advanced). In addition, we evaluated the robustness of the proposed approach when considering speech signals in three d...

A Deep Learning Approach for Classification and Diagnosis of Parkinson’s Disease

2021

Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Ne...

Deep Learning-Aided Parkinson's Disease Diagnosis from Handwritten Dynamics

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2016

Parkinson's Disease (PD) automatic identification in early stages is one of the most challenging medicine-related tasks to date, since a patient may have a similar behaviour to that of a healthy individual at the very early stage of the disease. In this work, we cope with PD automatic identification by means of a Convolutional Neural Network (CNN), which aims at learning features from a signal extracted during the individual's exam by means of a smart pen composed of a series of sensors that can extract information from handwritten dynamics. We have shown CNNs are able to learn relevant information, thus outperforming results obtained from raw data. Also, this work aimed at building a public dataset to be used by researchers worldwide in order to foster PD-related research.

High-Resolution Motor State Detection in Parkinson’s Disease Using Convolutional Neural Networks

Scientific Reports, 2020

Patients with advanced Parkinson’s disease regularly experience unstable motor states. Objective and reliable monitoring of these fluctuations is an unmet need. We used deep learning to classify motion data from a single wrist-worn IMU sensor recording in unscripted environments. For validation purposes, patients were accompanied by a movement disorder expert, and their motor state was passively evaluated every minute. We acquired a dataset of 8,661 minutes of IMU data from 30 patients, with annotations about the motor state (OFF,ON, DYSKINETIC) based on MDS-UPDRS global bradykinesia item and the AIMS upper limb dyskinesia item. Using a 1-minute window size as an input for a convolutional neural network trained on data from a subset of patients, we achieved a three-class balanced accuracy of 0.654 on data from previously unseen subjects. This corresponds to detecting the OFF, ON, or DYSKINETIC motor state at a sensitivity/specificity of 0.64/0.89, 0.67/0.67 and 0.64/0.89, respective...