The anti-spherical category (original) (raw)

Abstract

We study a diagrammatic categorification (the "anti-spherical category") of the anti-spherical module for any Coxeter group. We deduce that Deodhar's (sign) parabolic Kazhdan-Lusztig polynomials have non-negative coefficients, and that a monotonicity conjecture of Brenti's holds. The main technical observation is a localization procedure for the anti-spherical category, from which we construct a "light leaves" basis of morphisms. Our techniques may be used to calculate many new elements of the p-canonical basis in the anti-spherical module.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (40)

  1. S. Arkhipov and R. Bezrukavnikov. Perverse sheaves on affine flags and Langlands dual group. Israel J. Math., 170:135-183, 2009. With an appendix by Bezrukavnikov and Ivan Mirković.
  2. P. Achar, S. Makisumi, S. Riche, and G. Williamson. Free-monodromic mixed tilting sheaves on flag varieties. preprint.
  3. P. Achar, S. Makisumi, S. Riche, and G. Williamson. Koszul duality for Kac-Moody groups and characters of tilting modules. J. Amer. Math. Soc., 32(1):261-310, 2019.
  4. P. N. Achar and S. Riche. Modular perverse sheaves on flag varieties I: tilting and parity sheaves. Ann. Sci. Éc. Norm. Supér. (4), 49(2):325-370, 2016. With a joint appendix with Geordie Williamson.
  5. P. N. Achar and S. Riche. Modular perverse sheaves on flag varieties, II: Koszul duality and formality. Duke Math. J., 165(1):161-215, 2016.
  6. R. Bezrukavnikov and S. Riche. Hecke action on the principal block, 2020. arXiv:2009.10587.
  7. J. Ciappara. Hecke category actions via Smith-Treumann theory, 2021. arXiv:2103.07091.
  8. V. V. Deodhar. On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials. J. Algebra, 111(2):483-506, 1987.
  9. B. Elias and I. Losev. Modular representation theory in type A via Soergel bimodules. Preprint. arXiv:1701.00560.
  10. B. Elias. A diagrammatic Temperley-Lieb categorification. Int. J. Math. Math. Sci., pages Art. ID 530808, 47, 2010.
  11. B. Elias. The two-color Soergel calculus. Compos. Math., 152(2):327-398, 2016.
  12. B. Elias and G. Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2), 180(3):1089-1136, 2014.
  13. B. Elias and G. Williamson. Soergel calculus. Represent. Theory, 20:295-374, 2016.
  14. E. Gorsky and M. Hogancamp. Hilbert schemes and y-ification of khovanov-rozansky homology, 2017. 1712.03938.
  15. J. Gibson, L. T. Jensen, and G. Williamson. An algorithm to compute the p-canonical basis. in preparation.
  16. A. Hazi. Matrix recursion for positive characteristic diagrammatic soergel bimodules for affine weyl groups, 2018. arXiv:1708.07072.
  17. J. E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.
  18. X. He and G. Williamson. Soergel calculus and Schubert calculus. Bull. Inst. Math. Acad. Sin. (N.S.), 13(3):317-350, 2018.
  19. L. T. Jensen and G. Williamson. The p-canonical basis for Hecke algebras. In Cate- gorification and higher representation theory, volume 683 of Contemp. Math., pages 333-361. Amer. Math. Soc., Providence, RI, 2017.
  20. D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165-184, 1979.
  21. D. Kazhdan and G. Lusztig. Schubert varieties and Poincaré duality. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 185-203. Amer. Math. Soc., Prov- idence, R.I., 1980.
  22. M. Khovanov, V. Mazorchuk, and C. Stroppel. A categorification of integral Specht modules. Proc. Amer. Math. Soc., 136(4):1163-1169, 2008.
  23. M. Kashiwara and T. Tanisaki. Parabolic Kazhdan-Lusztig polynomials and Schubert varieties. J. Algebra, 249(2):306-325, 2002.
  24. N. Libedinsky. Sur la catégorie des bimodules de Soergel. J. Algebra, 320(7):2675- 2694, 2008.
  25. N. Libedinsky. Light leaves and Lusztig's conjecture. Adv. Math., 280:772-807, 2015.
  26. S. Leslie and G. Lonergan. Parity sheaves and Smith theory. J. Reine Angew. Math., 777:49-87, 2021.
  27. N. Libedinsky and G. Williamson. Standard objects in 2-braid groups. Proc. Lond. Math. Soc. (3), 109(5):1264-1280, 2014.
  28. G. Lusztig and G. Williamson. Billiards and tilting characters for SL 3 . SIGMA Sym- metry Integrability Geom. Methods Appl., 14:Paper No. 015, 22, 2018.
  29. S. Makisumi. Mixed modular perverse sheaves on moment graphs. arXiv:1703.01571.
  30. P. Mongelli. Kazhdan-Lusztig polynomials of Boolean elements. J. Algebraic Combin., 39(2):497-525, 2014.
  31. R. Rouquier. Categorification of sl 2 and braid groups. In Trends in representation theory of algebras and related topics, volume 406 of Contemp. Math., pages 137-167. Amer. Math. Soc., Providence, RI, 2006.
  32. S. Riche and G. Williamson. Tilting modules and the p-canonical basis. Astérisque, (397):ix+184, 2018.
  33. S. Riche and G. Williamson. Smith-Treumann theory and the linkage principle, 2020. arXiv:2003.08522.
  34. W. Soergel. Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Amer. Math. Soc., 3(2):421-445, 1990.
  35. W. Soergel. Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. Theory, 1:83-114 (electronic), 1997.
  36. W. Soergel. On the relation between intersection cohomology and representation the- ory in positive characteristic. J. Pure Appl. Algebra, 152(1-3):311-335, 2000.
  37. W. Soergel. Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynom- ringen. J. Inst. Math. Jussieu, 6(3):501-525, 2007.
  38. C. Stroppel. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors. Duke Math. J., 126(3):547-596, 2005.
  39. D. Treumann. Smith theory and geometric Hecke algebras. Math. Ann., 375(1-2):595- 628, 2019.
  40. G. Williamson. Modular representations and reflection subgroups, 2020. Current De- velopments in Mathematics lecture, arXiv:2001.04569.