A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem (original) (raw)

Solution approaches for the soft drink integrated production lot sizing and scheduling problem

European Journal of Operational Research, 2009

Lot sizing Scheduling Soft drink industry Mixed integer programming Relax-and-fix heuristic a b s t r a c t In this paper we present a mixed integer programming model that integrates production lot sizing and scheduling decisions of beverage plants with sequence-dependent setup costs and times. The model considers that the industrial process produces soft drink bottles in different flavours and sizes, and it is carried out in two production stages: liquid preparation (stage I) and bottling (stage II). The model also takes into account that the production bottleneck may alternate between stages I and II, and a synchronisation of the production between these stages is required. A relaxation approach and several strategies of the relax-and-fix heuristic are proposed to solve the model. Computational tests with instances generated based on real data from a Brazilian soft drink plant are also presented. The results show that the solution approaches are capable of producing better solutions than those used by the company.

Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem

2009

This paper introduces an evolutionary algorithm as a procedure to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem can be found in some industrial settings, mainly soft drink companies, where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot-sizing and scheduling of raw materials in tanks and soft drinks in bottling lines, where setup costs and times depend on the previous items stored and bottled. A multi-population genetic algorithm approach with a novel representation of solutions for individuals and a hierarchical ternary tree structure for populations is proposed. Computational tests include comparisons with an exact approach for small-tomoderate sized instances and with real-world production plans provided by a manufacturer.

A Memetic Framework for Solving the Lot Sizing and Scheduling Problem in Soft Drink Plants

Variants of Evolutionary Algorithms for Real-World Applications, 2012

This chapter presents a memetic framework for solving the Synchronized and Integrated Two-level Lot Sizing and Scheduling Problem (SITLSP). A set of algorithms from this framework is thoroughly evaluated. The SITLSP is a real-world problem typically found in soft drink plants, but its presence can also be seen in many other multi-level production processes. The SITLSP involves a two-level production process where lot sizing and scheduling decisions have to be made for raw material storage in tanks and soft drink bottling in various production lines. The work presented here extends a previously proposed memetic computing approach that combines a multi-population genetic algorithm with a threshold accepting heuristic. The novelty and its main contribution is the use of tabu search combined with the multi-population genetic algorithm as a method to solve the SITLSP. Two real-world problem sets, both provided by a leading market soft drink company, have been used for the computational experiments. The results show that the memetic algorithms proposed significantly outperform the previously reported solutions used for comparison.

Heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks industry: a comparison study

2008

This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach.

An optimization approach for the lot sizing and scheduling problem in the brewery industry

Computers & Industrial Engineering, 2014

This study considers a production lot sizing and scheduling problem in the brewery industry. The underlying manufacturing process can be basically divided into two main production stages: preparing the liquids including fermentation and maturation inside the fermentation tanks; and bottling the liquids on the filling lines, making products of different liquids and sizes. This problem differs from other problems in beverage industries due to the relatively long lead times required for the fermentation and maturation processes and because the ''ready'' liquid can remain in the tanks for some time before being bottled. The main planning challenge is to synchronize the two stages (considering the possibility of a ''ready'' liquid staying in the tank until bottling), as the production bottlenecks may alternate between these stages during the planning horizon. This study presents a novel mixed integer programming model that represents the problem appropriately and integrates both stages. In order to solve real-world problem instances, MIP-based heuristics are developed, which explore the model structure. The results show that the model is able to comprise the problem requirements and the heuristics produce relatively good-quality solutions.

Strategies to Model Scheduling Decisions to Plan the Soft Drink Production Process

Proceedings of the 1st International Conference on Operations Research and Enterprise Systems, 2012

In this paper we present a mixed integer model that integrates lot sizing and lot scheduling decisions for the production planning of a soft drink company. The main contribution of the paper is to present a model that differ from others in the literature for the constraints related to the scheduling decisions. The proposed strategy is compared to other strategies presented in the literature.

Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production

2012

This study deals with industrial processes that produce soft drink bottles in different flavours and sizes, carried out in two synchronised production stages: liquid preparation and bottling. Four single-stage formulations are proposed to solve the synchronised two-stage lot sizing and scheduling problem in soft drink production synchronising the first stage's syrup lots in tanks with the second stage's soft drink lots on bottling lines. The first two formulations are variants of the General Lot Sizing and Scheduling Problem (GLSP) with sequence-dependent setup times and costs, while the other two are based on the Asymmetric Travelling Salesman Problem (ATSP) with different subtour elimination constraints. All models are computationally tested and compared to the original two-stage formulation introduced in Ferreira et al. (2009), using data based on a real-world bottling plant. The results show not only the superiority of the single-stage models if compared to the two-stage formulation, but also the much faster solution times of the ATSP-based models.

Evolutionary Approaches to Solve an Integrated Lot Scheduling Problem in the Soft Drink Industry

7th International Conference on Hybrid Intelligent Systems (HIS 2007), 2007

, namely BIC-aiNet, capable of clustering rows and columns of a data matrix simultaneously. The usefulness and performance of the methodology are reported in the literature. Now, the authors carry out more rigorous comparative experiments with BIC-aiNet and other techniques found in the literature, as well as evaluate the scalability of the algorithm in several datasets of different sizes. The results indicate that our proposal is able to provide useful recommendations for the users, outperforming other methodologies for CF.

Alternative Mathematical Models and Solution Approaches for Lot-Sizing and Scheduling Problems in the Brewery Industry: Analyzing Two Different Situations

Mathematical Problems in Engineering

This research proposes new approaches to deal with the production planning and scheduling problem in brewery facilities. Two real situations found in factories are addressed, which differ by considering (or not) the setup operations in tanks that provide liquid for bottling lines. Depending on the technology involved in the production process, the number of tank swaps is relevant (Case A) or it can be neglected (Case B). For both scenarios, new MIP (Mixed Integer Programming) formulations and heuristic solution methods based on these formulations are proposed. In order to evaluate the approach for Case A, we compare the results of a previous study with the results obtained in this paper. For the solution methods and the result analysis of Case B, we propose adaptations of Case A approaches yielding an alternative MIP formulation to represent it. Therefore, the main contributions of this article are twofold: (i) to propose alternative MIP models and solution methods for the problem i...

Tabu search to solve the synchronized and integrated two-level lot sizing and scheduling problem

Proceedings of the 13th annual conference on Genetic and evolutionary computation - GECCO '11, 2011

This paper proposes a tabu search approach to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). It is a real-world problem, often found in soft drink companies, where the production process has two integrated levels with decisions concerning raw material storage and soft drink bottling. Lot sizing and scheduling of raw materials in tanks and products in bottling lines must be simultaneously determined. Real data provided by a soft drink company is used to make comparisons with a previous genetic algorithm. Computational results have demonstrated that tabu search outperformed genetic algorithm in all instances.