The effect of structure in a long target RNA on ribozyme cleavage efficiency (original) (raw)

Specificity of hammerhead ribozyme cleavage

The EMBO Journal, 1996

To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths.

Length Variation of Helix III in a Hammerhead Ribozyme and Its Influence on Cleavage Activity

Antisense and Nucleic Acid Drug Development, 1999

The previously described HIV-1 directed hammerhead ribozyme 2as-Rzl2 can form with its target RNA 2s helices I and III of 128 and 278 base pairs (bp). A series of derivatives was made in which helix III was truncated to 8,5,4,3, and 2 nucleotides (nt). These asymmetric hammerhead ribozymes were tested for in vitro cleavage and for inhibition of HIV-1 replication in human cells. Truncation of helix III to 8 bp did not affect the in vitro cleavage potential of the parental catalytic antisense RNA 2as-Rzl2. Further truncation of helix III led to decreased cleavage rates, with no measurable cleavage activity for the 2 bp construct. All catalytically active constructs showed complex cleavage kinetics. Three kinetic subpopulations of ribozyme-substrate complexes could be discriminated that were cleaved with fast or slow rates or not at all. Gel purification of preformed ribozyme-substrate complexes led to a significant increase in cleavage rates. However, the complex cleavage pattern remained. In mammalian cells, the helix Ill-truncated constructs showed the same but no increased inhibitory effect of the comparable antisense RNA on HIV-1 replication.

Structural Variation Induced by Different Nucleotides at the Cleavage Site of the Hammerhead Ribozyme †

Biochemistry, 1998

The hammerhead ribozyme is capable of cleaving RNA substrates at 5′ UX 3′ sequences (where the cleavage site, X, can be A, C, or U). Hammerhead complexes containing dC, dA, dI, or rG nucleotides at the cleavage site have been studied by NMR. The rG at the cleavage site forms a Watson-Crick base pair with C3 in the conserved core of the hammerhead, indicating that rG substrates inhibit the cleavage reaction by stabilizing an inactive conformation of the molecule. Isotope-edited NMR experiments on the hammerhead complexes show that there are different short proton-proton distances between neighboring residues depending upon whether there is a dC or dA at the cleavage site. These NMR data demonstrate that there are significant differences in the structure and/or dynamics of the activesite residues in these hammerhead complexes. Molecular dynamics calculations were used to model the conformations of the cleavage-site variants consistent with the NMR data. The solution conformations of the hammerhead ribozyme-substrate complexes are compared with the X-ray structure of the hammerhead ribozyme and are used to help understand the thermodynamic and kinetic differences among the cleavage-site variants.

The specific hydrolysis of HIV-1 TAR RNA element with the anti-TAR hammerhead ribozyme: structural and functional implications

International Journal of Biological Macromolecules, 2001

The main transcriptional regulator of the human immunodeficiency virus is the Tat protein, which recognises and binds to a fragment RNA at the 5% end of viral mRNA, named transactivation response element (TAR) RNA. Extensive mutagenesis studies have shown that a region of TAR RNA important for Tat binding involves a set of nucleotides surrounding a characteristic UCU nucleotide bulge. The specific Tat-TAR complex formation enhances the rate of transcription elongation but inhibition of that interaction prevents the human immunodeficiency virus type 1 (HIV-1) replication. If so, a possibility of virus inactivation would be a site specific degradation of the TAR RNA element. To break down and inactivate TAR RNA, we designated the anti-hammerhead (HH) ribozyme to cleave nucleosides within the bulge. We showed for the first time the new type of the AUC hammerhead ribozyme, which hydrolyses specifically the TAR RNA element at C8 nucleotide in the bulge (C24 in the standard TAR RNA numbering). The cleavage reaction has broad magnesium requirements. Mn and particularly Ca are less efficient. Argininamide interferes with the cleavage of TAR RNA induced by the ribozyme. These results have two implications; (i) structural, where the HIV-1 TAR RNA element in solution occurs in equilibrium of only two forms, one of which, a double stranded RNA, meets structural requirements for ribozyme pairing and cleavage, and (ii) functional, the HH ribozyme can be explored for an inactivation of HIV-1 through the TAR RNA element deintegration.

Faculty of 1000 evaluation for Capturing hammerhead ribozyme structures in action by modulating general base catalysis

F1000 - Post-publication peer review of the biomedical literature, 2008

We have obtained precatalytic (enzyme-substrate complex) and postcatalytic (enzyme-product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pK a that does not significantly perturb the ribozyme's atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme-substrate and enzyme-product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures.

Base and Sugar Requirements for RNA Cleavage of Essential Nucleoside Residues in Internal Loop B of the Hairpin Ribozyme: Implications for Secondary Structure

Nucleic Acids Research, 1996

The hairpin ribozyme is a small self-cleaving RNA that can be engineered for RNA cleavage in trans and has potential as a therapeutic agent. We have used a chemical synthesis approach to study the requirements of hairpin RNA cleavage for sugar and base moieties in residues of internal loop B, an essential region in one of the two ribozyme domains. Individual nucleosides were substituted by either a 2′-deoxynucleoside, an abasic residue, or a C3-spacer (propyl linker) and the abilities of the modified ribozymes to cleave an RNA substrate were studied in comparison with the wild-type ribozyme. From these results, together with previous studies, we propose a new model for the potential secondary structure of internal loop B of the hairpin ribozyme.

A structural analysis of in vitro catalytic activities of hammerhead ribozymes

BMC Bioinformatics, 2007

Background Ribozymes are small catalytic RNAs that possess the dual functions of sequence-specific RNA recognition and site-specific cleavage. Trans-cleaving ribozymes can inhibit translation of genes at the messenger RNA (mRNA) level in both eukaryotic and prokaryotic systems and are thus useful tools for studies of gene function. However, identification of target sites for efficient cleavage poses a challenge. Here, we have considered a number of structural and thermodynamic parameters that can affect the efficiency of target cleavage, in an attempt to identify rules for the selection of functional ribozymes. Results We employed the Sfold program for RNA secondary structure prediction, to account for the likely population of target structures that co-exist in dynamic equilibrium for a specific mRNA molecule. We designed and prepared 15 hammerhead ribozymes to target GUC cleavage sites in the mRNA of the breast cancer resistance protein (BCRP). These ribozymes were tested, and thei...

Influence of substrate structure on cleavage by hammerhead ribozyme

FEBS Letters, 1996

We compared the cleavage by a hammerhead ribozyme of a wild-type precursor tRNA (pre-tRNA[ ee) and a structurally altered mutant form. We also analyzed the cleavage reactions of these tRNAs catalyzed by a ribozyme variant that was designed to complement the mutant precursor tRNA. Kinetic analyses reveal that the kcat values are nearly the same for the wild-type and the mutant substrate RNAs. However, the Km values differ considerably, being higher for the wild-type substrate. Thus, the formation of the ribozyme-substrate complex, but not the chemical cleavage step, is affected by these changes. Time course studies were performed, at different temperatures, to estimate the efficiency of the cleavage reactions and the effect of temperature. The cleavage of mutant precursor tRNA is generally faster than the wild-type at all temperatures analyzed. These results suggest that snbstrate structures can limit ribozyme efficiency, presumably by hindering the hybridization step.