Hydrogel Assisted Double Molding of 3D-Print Enables Prestress Regulation of Micro-Heart Muscle Physiology (original) (raw)
Related papers
Circulation Research, 2017
Rationale: Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Objective: Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell–derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. Methods and Results: The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell–derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increas...
In Silico Electrophysiological Evaluation of Scaffold Geometries for Cardiac Tissue Engineering
2021 Computing in Cardiology (CinC), 2021
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured on bio-printed scaffolds have shown promising results for cardiac function restoration in regenerative medicine. Nevertheless, proarrhythmicity favored by reduced conduction velocity of the transplanted constructs as compared to native tissue has been poorly assessed. Here, we investigate the impact of the scaffold geometry on the electrical activation properties of hiPSC-CMs cultures. Electrophysiological models of hiPSC-CMs and the Finite Element Method were employed for computational simulation of hiPSC-CMs cultures. The models were calibrated to replicate experimentally measured activation time maps by adjusting parameters representative of fiber alignment and cell-to-cell coupling. Scaffolds with rectangular, auxetic and elongated hexagonal pore shapes were studied to determine the most biomimetic structure in terms of electrical propagation characteristics. Our results showed that the geometry with elongated hexagonal pores led to faster activation of hiPSC-CMs cultures by facilitating the alignment of cardiac fibers in the longitudinal direction. These pore shapes mimic cardiac anisotropy, therefore would be the preferred geometry for experimental culture.
Capillary Force Lithography for Cardiac Tissue Engineering
Journal of Visualized Experiments, 2014
Cardiovascular disease remains the leading cause of death worldwide 1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart's extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro-to the nanometer scale 2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering 3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling 2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart 6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA) 8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function 10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively 15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS 2 .
Acta biomaterialia, 2016
Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes...
Biomaterials, 2015
Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straightforward , ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. Here we demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.
3D bioprinted functional and contractile cardiac tissue constructs
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-mm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture , implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for a-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. Statement of Significance Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and oxygen supply to the cardiac muscle, resulting in permanent cardiac cell death. Eventually, scar tissue formed in the damaged cardiac muscle that cannot conduct electrical or mechanical stimuli thus leading to a reduction in the pumping efficiency of the heart. The therapeutic options available for end-stage heart failure is to undergo heart transplantation or the use of mechanical ventricular assist devices (VADs). However, many patients die while being on a waiting list, due to the organ shortage and limitation of VADs, such as surgical complications, infection, thrombogenesis, and failure of the electrical motor and hemolysis. Ultimately, 3D bioprinting strategy aims to create clinically applicable tissue constructs that can be immediately implanted in the body. To date, the focus on replicating complex and heterogeneous tissue constructs continues to increase as 3D bioprinting technologies advance. In this study, we demonstrated the feasibility of 3D bioprinting strategy to bioengineer the functional cardiac tissue that possesses a highly organized structure with unique physiological and biomechanical properties similar to native cardiac tissue. This bioprinting strategy has great potential to precisely generate functional cardiac tissues for use in pharmaceutical and regenerative medicine applications.
We developed a 96-well plate assay which allows fast, reproducible and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (PEG) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.
Soft Matter, 2012
Systematically tunable in vitro platforms are invaluable in gaining insight to stem cellmicroenvironment interactions in three-dimensional cultures. Utilizing recombinant protein technology, we independently tune hydrogel properties to systematically isolate the effects of matrix crosslinking density on cardiomyocyte differentiation, maturation, and function. We show that contracting human embryonic stem cell-derived cardiomyocytes (hESC-CMs) remain viable within four engineered elastin-like hydrogels of varying crosslinking densities with elastic moduli ranging from 0.45 to 2.4 kPa. Cardiomyocyte phenotype and function was maintained within hESC embryoid bodies for up to 2 weeks. Interestingly, increased crosslinking density was shown to transiently suspend spontaneous contractility. While encapsulated cells began spontaneous contractions at day 1 in hydrogels of the lowest crosslinking density, onset of contraction was increasingly delayed at higher crosslinking densities for up to 6 days. However, once spontaneous contraction was restored, the rate of contraction was similar within all materials (71 AE 8 beats per min). Additionally, all groups successfully responded to electrical pacing at both 1 and 2 Hz. This study demonstrates that encapsulated hESC-CMs respond to 3D matrix crosslinking density within elastin-like hydrogels and stresses the importance of investigating temporal cellular responses in 3D cultures.
Functional arrays of human pluripotent stem cell-derived cardiac microtissues
Nature Scientific Reports, 2020
To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues-termed Cardiac MicroRings (CaMiRi)-in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications. Screening using engineered heart tissue is limited by the high cost associated with the large cell numbers required for high-fidelity in vitro cardiac models, the lack of long-term function and viability of the tissues, and the challenge of imaging for data acquisition. Miniaturization of self-organizing cardiac organoids is a strategic approach to address these challenges using photolithography-and micromachining-based fabrication techniques 1-12. Unfortunately, some of these systems are difficult to manufacture on a macroscale, and production often requires a high level of skill. Furthermore, these methods are restrictive to specific design geometries (for instance, vertical walls spanning either the micrometer or centimeter scale but not both) and are occasionally expensive to prototype (due to requiring access to a cleanroom, cost of materials, and time). Another challenge typically associated with these microfluidic-and microstructure-based devices is adaptation to existing tissue culture equipment such as microscope stage adapters and liquid dispensing tools. Potential complications may also arise upon the
Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues
Nature Protocols, 2009
This protocol describes a cell/hydrogel molding method for precise and reproducible biomimetic fabrication of three-dimensional (3D) muscle tissue architectures in vitro. Using a high aspect ratio soft lithography technique, we fabricate polydimethylsiloxane (PDMS) molds containing arrays of mesoscopic posts with defined size, elongation and spacing. On cell/hydrogel molding, these posts serve to enhance the diffusion of nutrients to cells by introducing elliptical pores in the cell-laden hydrogels and to guide local 3D cell alignment by governing the spatial pattern of mechanical tension. Instead of ultraviolet or chemical cross-linking, this method utilizes natural hydrogel polymerization and topographically constrained cell-mediated gel compaction to create the desired 3D tissue structures. We apply this method to fabricate several square centimeter large, few hundred micron-thick bioartificial muscle tissues composed of viable, dense, uniformly aligned and highly differentiated cardiac or skeletal muscle fibers. The protocol takes 4-5 d to fabricate PDMS molds followed by 2 weeks of cell culture.