Abstract P006: Purinergic Receptor Activation Protects Glomerular Microvasculature From Increased Mechanical Stress In Angiotensin Ii-induced Hypertension: A Modeling Study (original) (raw)

Hypertension, 2020

Abstract

Angiotensin II (Ang II)-induced hypertension increases afferent and efferent arteriole resistances via the actions of Ang II on the AT1 receptor. In addition to the increased interstitial levels of Ang II, the increased arterial pressure increases interstitial ATP concentrations which act on the purinergic receptors P2X1 and P2X7, to constrict the AA, preventing increases in plasma flow and single nephron GFR (SNGFR). Blockade of the P2 receptors also mitigates the effects of Ang II, thus increasing blood flow and SNGFR, but the resulting increases in mechanical stresses (shear stress and circumferential hoop stress) on the glomerular microvasculature have not been quantified. A mathematical microvascular hemodynamic glomerular model was developed to simulate blood flow and plasma filtration at each of 320 capillary segments in an anatomically-accurate rat glomerular capillary network topology. Afferent and efferent arteriole resistances and network hydraulic conductivity were adjus...

owen Richfield hasn't uploaded this paper.

Let owen know you want this paper to be uploaded.

Ask for this paper to be uploaded.