The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage (original) (raw)

Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

Antioxidants & Redox Signaling, 2011

Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and=or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage-induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated b-lyase activity; (b) monofunctional; and (c) bifunctional with an associated b,dlyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox

Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins

Genetics and Molecular Biology, 2020

Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell's ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.

Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage

Toxicology, 2003

The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.

DNA Oxidation and Excision Repair Pathways

International Journal of Molecular Sciences

The physiological impact of the aberrant oxidation products on genomic DNA were demonstrated by embryonic lethality or the cancer susceptibility and/or neurological symptoms of animal impaired in the base excision repair (BER); the major pathway to maintain genomic integrity against non-bulky DNA oxidation. However, growing evidence suggests that other DNA repair pathways or factors that are not primarily associated with the classical BER pathway are also actively involved in the mitigation of oxidative assaults on the genomic DNA, according to the corresponding types of DNA oxidation. Among others, factors dedicated to lesion recognition in the nucleotide excision repair (NER) pathway have been shown to play eminent roles in the process of lesion recognition and stimulation of the enzyme activity of some sets of BER factors. Besides, substantial bulky DNA oxidation can be preferentially removed by a canonical NER mechanism; therefore, loss of function in the NER pathway shares comm...

Oxidative DNA damage repair in mammalian cells: A new perspective

Dna Repair, 2007

Oxidatively induced DNA lesions have been implicated in the etiology of many diseases (including cancer) and in aging. Repair of oxidatively damaged bases in all organisms occurs primarily via the DNA base excision repair (BER) pathway, initiated with their excision by DNA glycosylases. Only two mammalian DNA glycosylases, OGG1 and NTH1 of E. coli Nth family, were previously characterized, which excise majority of the oxidatively damaged base lesions. We recently discovered and characterized two human orthologs of E. coli Nei, the prototype of the second family of oxidized base-specific glycosylases and named them NEIL (Nei-like)-1 and 2. NEILs are distinct from NTH1 and OGG1 in structural features and reaction mechanism but act on many of the same substrates. Nth-type DNA glycosylases after base excision, cleave the DNA strand at the resulting AP-site to produce a 3′-αβ unsaturated aldehyde whereas Nei-type enzymes produce 3′-phosphate terminus. E. coli APEs efficiently remove both types of termini in addition to cleaving AP sites to generate 3′-OH, the primer terminus for subsequent DNA repair synthesis. In contrast, the mammalian APE, APE1, which has an essential role in NTH1/OGG1-initiated BER, has negligible 3′-phosphatase activity and is dispensable for NEIL-initiated BER. Polynucleotide kinase (PNK), present in mammalian cells but not in E. coli, removes the 3′ phosphate, and is involved in NEILinitiated BER. NEILs show a unique preference for excising lesions from a DNA bubble, while most DNA glycosylases, including OGG1 and NTH1, are active only with duplex DNA. The dichotomy in the preference of NEILs and NTH1/OGG1 for bubble versus duplex DNA substrates suggests that NEILs function preferentially in repair of base lesions during replication and/or transcription and hence play a unique role in maintaining the functional integrity of mammalian genomes.

Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage

Environmental and Molecular Mutagenesis, 2001

Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase β or replicative polymerases δ and ε. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation.

Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions

Nucleic acids …, 2010

How DNA repair machineries detect and access, within the context of chromatin, lesions inducing little or no distortion of the DNA structure is a poorly understood process. Removal of oxidized bases is initiated by a DNA glycosylase that recognises and excises the damaged base, initiating the base excision repair (BER) pathway. We show that upon induction of 8-oxoguanine, a mutagenic product of guanine oxidation, the mammalian 8-oxoguanine DNA glycosylase OGG1 is recruited together with other proteins involved in BER to euchromatin regions rich in RNA and RNA polymerase II and completely excluded from heterochromatin. The underlying mechanism does not require direct interaction of the protein with the oxidized base, however, the release of the protein from the chromatin fraction requires completion of repair. Inducing chromatin compaction by sucrose results in a complete but reversible inhibition of the in vivo repair of 8-oxoguanine. We conclude that after induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions, suggesting preferential repair of active chromosome regions.

Requirement of transcription-coupled nucleotide excision repair for the removal of a specific type of oxidatively induced DNA damage

Accumulation of DNA damage resulting from reactive oxygen species was proposed to cause neurological and degenerative disease in patients, deficient in nucleotide excision repair (NER) or its transcriptioncoupled subpathway (TC-NER). Here, we assessed the requirement of TC-NER for the repair of specific types of oxidatively generated DNA modifications. We incorporated synthetic 5 ,8-cyclo-2-deoxypurine nucleotides (cyclo-dA, cyclo-dG) and thymine glycol (Tg) into an EGFP reporter gene to measure transcription-blocking potentials of these modifications in human cells. Using null mutants, we further identified the relevant DNA repair components by a host cell reactivation approach. The results indicated that NTHL1-initiated base excision repair is by far the most efficient pathway for Tg. Moreover, Tg was efficiently bypassed during transcription, which effectively rules out TC-NER as an alternative repair mechanism. In a sharp contrast, both cyclopurine lesions robustly blocked transcription and were repaired by NER, wherein the specific TC-NER components CSB/ERCC6 and CSA/ERCC8 were as essential as XPA. Instead, repair of classical NER substrates, cyclobutane pyrimidine dimer and N-(deoxyguanosin-8-yl)-2-acetylaminofluorene, occurred even when TC-NER was disrupted. The strict requirement of TC-NER highlights cyclo-dA and cyclo-dG as candidate damage types, accountable for cytotoxic and degen-erative responses in individuals affected by genetic defects in this pathway.