Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease (original) (raw)

The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy

Frontiers in Physiology

The NOD-like receptor protein 3 (NLRP3) inflammasome is a multi-protein signalling complex integral to the chronic inflammatory response, activated in response to sterile and non-sterile cellular damage. The assembly and activation of the NLRP3 inflammasome comprise a two-step process involving nuclear factor kappa B (NFkB)-mediated priming, followed by canonical, non-canonical or alternative signalling pathways. These result in the maturation and release of inflammatory cytokines interleukin 1 beta (IL1ß) and interleukin-18 (IL18), which are associated with chronic inflammatory conditions including diabetic kidney disease. Diabetic nephropathy is a condition affecting ∼40% of people with diabetes, the key underlying pathology of which is tubulointerstitial inflammation and fibrosis. There is growing evidence to suggest the involvement of the NLRP3 inflammasome in this chronic inflammation. Early deterioration of kidney function begins in the glomerulus, with tubular inflammation di...

Neutrophil Extracellular Traps in the Establishment and Progression of Renal Diseases

Medicina, 2019

Uncontrolled inflammatory and immune responses are often involved in the development of acute and chronic forms of renal injury. Neutrophils are innate immune cells recruited early to sites of inflammation, where they produce pro-inflammatory cytokines and release mesh-like structures comprised of DNA and granular proteins known as neutrophil extracellular traps (NETs). NETs are potentially toxic, contribute to glomerular injury, activate autoimmune processes, induce vascular damage, and promote kidney fibrosis. Evidence from multiple studies suggests that an imbalance between production and clearance of NETs is detrimental for renal health. Hence strategies aimed at modulating NET-associated processes could have a therapeutic impact on a myriad of inflammatory diseases that target the kidney. Here, we summarize the role of NETs in the pathogenesis of renal diseases and their mechanisms of tissue damage.

Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease

Clinical Science, 2022

Activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome has been reported in diabetic complications including diabetic kidney disease (DKD). However, it remains unknown if NLRP3 inhibition is renoprotective in a clinically relevant interventional approach with established DKD. We therefore examined the effect of the NLRP3-specific inhibitor MCC950 in streptozotocin-induced diabetic mice to measure the impact of NLRP3 inhibition on renal inflammation and associated pathology in DKD. We identified an adverse effect of MCC950 on renal pathology in diabetic animals. Indeed, MCC950-treated diabetic animals showed increased renal inflammation and macrophage infiltration in association with enhanced oxidative stress as well as increased mesangial expansion and glomerulosclerosis when compared with vehicle-treated diabetic animals. Inhibition of the inflammasome by MCC950 in diabetic mice led to renal up-regulation of markers of i...

High-Throughput Analysis of Neutrophil Extracellular Trap Levels in Subtypes of People with Type 1 Diabetes

Biology

Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol–myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-inde...

The NLRP3 Inflammasome Promotes Renal Inflammation and Contributes to CKD

Journal of the American Society of Nephrology, 2010

Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1␤ and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1␤, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3 Ϫ/Ϫ mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1␤ and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.

Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy

World journal of diabetes, 2012

Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading to the development and progression of renal injury are not well known. Therefore, it is very important to find new pathogenic pathways to provide opportunities for early diagnosis and targets for novel treatments. At the present time, we know that activation of innate immunity with development of a chronic low grade inflammatory response is a recognized factor in the pathogenesis of diabetic nephropathy. Numerous experimental and clinical studies have shown the participation of different inflammatory molecules and pathways in the pathophysiology of this complication.

Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy

International Journal of Molecular Sciences

Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules ...