Methodology for Multidisciplinary Optimization of Vehicle Suspension Systems (original) (raw)
A manual iterative process is often used in the design process of vehicle suspension systems. This thesis aim to develop a methodology for multidisciplinary optimization of vehicle suspension systems, which can be used to introduce an optimization driven process into the design process of vehicle suspension systems. A Multibody Dynamics (MBD) model of a Strut & Coil Spring suspension system will be used as a test subject. The methodology developed includes concept screening of suspension systems, multi-objective system optimization and weight reduction using structural optimization. The initial concept screening will provide guidance to selection of important design variables. Ride comfort, handling performance, and noise, vibration, and harshness (NVH) are optimized in the multi-objective system optimization, using the Multi-Objective Genetic Algorithm (MOGA) combined with a Design Space Reduction Method (DSRM).
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.