A Note on Finite Metabelian Groups of Wielandt Length Two (original) (raw)

2001, Southeast Asian Bulletin of Mathematics

Abstract

The class of groups of Wielandt length one has been extensively studied and recently the class of groups of Wielandt length two has been studied, in particular nilpotent groups of odd order by E.A. Ormerod and supersoluble groups of order prime to six by A. Ali. In this paper we consider metabelian groups of odd order and provide characterizations for those groups with nilpotent residual either a Hall subgroup or of prime power order.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (12)

  1. Ali, A.: On the Wielandt length of a ®nite supersoluble group, Proceedings A of J. Royal Society of Edinburgh.
  2. Baer, R.: Der Kern, eine charakteristiche Untergruppe, Composito Math. 1, 254±283 (1934).
  3. Bryce, R.A., Cossey, J.: The Wielandt subgroup of a ®nite soluble group, J. London Math. Soc. 40(2), 244±256 (1989).
  4. Camina, A.R.: The Wielandt length of ®nite groups, J. Algebra 15, 142±148 (1970).
  5. Cooper, C.: Power automorphisms of a group, Math. Z. 107, 335±356 (1968).
  6. Doerk, K., Hawkes, T.: Finite soluble groups, De Gruyter Expositions in mathematics 4, Walter de Gruyter, Berlin, 1992.
  7. Gaschutz, W.: Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198, 87±92 (1957).
  8. Ormerod, E.A.: Groups of Wielandt length two, Math. Proc. Camb. Phil. Soc. 110, 229±244 (1991).
  9. Peng, T.A.: Finite groups with pronormal subgroups, Proc. Amer. Math. Soc. 20, 232± 234 (1969).
  10. Robinson, D.J.S.: A course in the theory of groups, Graduate Texts in Mathematics 80, Springer New York, 1982.
  11. Wielandt, H.: Uber den Normalisator der subnormalen Untergruppen, Math. Z. 69, 463±465 (1958).
  12. Zacher, G.: Caratterizzione dei t-grouppi ®niti risolubili, Ricerche Math. 1, 287±294 (1952).