Compressive sensing in video applications (original) (raw)

Compressive sensing based velocity estimation in video data

2015 4th Mediterranean Conference on Embedded Computing (MECO), 2015

This paper considers the use of compressive sensing based algorithms for velocity estimation of moving vehicles. The procedure is based on sparse reconstruction algorithms combined with time-frequency analysis applied to video data. This algorithm provides an accurate estimation of object's velocity even in the case of a very reduced number of available video frames. The influence of crucial parameters is analysed for different types of moving vehicles.

Streaming Compressive Sensing for high-speed periodic videos

2010

The ability of Compressive Sensing (CS) to recover sparse signals from limited measurements has been recently exploited in computational imaging to acquire high-speed periodic and nearperiodic videos using only a low-speed camera with coded exposure and intensive off-line processing. Each low-speed frame integrates a coded sequence of high-speed frames during its exposure time. The high-speed video can be reconstructed from the low-speed coded frames using a sparse recovery algorithm. This paper presents a new streaming CS algorithm specifically tailored to this application. Our streaming approach allows causal on-line acquisition and reconstruction of the video, with a small, controllable, and guaranteed buffer delay and low computational cost. The algorithm adapts to changes in the signal structure and, thus, outperforms the off-line algorithm in realistic signals.

Compressed Motion Sensing

2017

We consider the problem of sparse signal recovery in dynamic sensing scenarios. Specifically, we study the recovery of a sparse time-varying signal from linear measurements of a single static sensor that are taken at two different points in time. This setup can be modelled as observing a single signal using two different sensors – a real one and a virtual one induced by signal motion, and we examine the recovery properties of the resulting combined sensor. We show that not only can the signal be uniquely recovered with overwhelming probability by linear programming, but also the correspondence of signal values (signal motion) can be established between the two points in time. In particular, we show that in our scenario the performance of an undersampling static sensor is doubled or, equivalently, that the number of sufficient measurements of a static sensor is halved.

A Study on Compressive Sensing and Reconstruction Approach

Journal of emerging technologies and innovative research, 2015

This paper gives the conventional approach of reconstructing signals or images from calculated data by following the well-known Shannon sampling theorem. This principle underlies the majority devices of current technology, such as analogto-digital conversion, medical imaging, or audio and video electronics. The primary objective of this paper is to establish the need of compressive sensing in the field of signal processing and image processing. Compressive sensing (CS) is a novel kind of sampling theory, which predicts that sparse signals and images can be reconstructed from what was in the past thought to be partial information. CS has two distinct major approaches to sparse recovery that each present different benefits and shortcomings. The first, l1-minimization methods such as Basis Pursuit use a linear optimization problem to recover the signal. This method provides strong guarantees and stability, but relies on Linear Programming, whose methods do not yet have strong polynomia...

Recovery of frequency-sparse signals from compressive measurements

Communication, Control, and …, 2010

Compressive sensing (CS) is a new approach to simultaneous sensing and compression for sparse and compressible signals. While the discrete Fourier transform has been widely used for CS of frequency-sparse signals, it provides optimal sparse representations only for signals with components at integral frequencies. There exist redundant frames that provide compressible representations for frequency-sparse signals, but such frames are highly coherent and severely affect the performance of standard CS recovery. In this paper, we show that by modifying standard CS recovery algorithms to prevent coherent frame elements from being present in the signal estimate, it is possible to bypass the shortcomings introduced by the coherent frame. The resulting algorithm comes with theoretical guarantees and is shown to perform significantly better for frequencysparse signal recovery than its standard counterparts. The algorithm can also be extended to similar settings that use coherent frames.

Compressive acquisition of dynamic scenes

2010

Compressive sensing (CS) is a new approach for the acquisition and recovery of sparse signals and images that enables sampling rates significantly below the classical Nyquist rate. Despite significant progress in the theory and methods of CS, little headway has been made in compressive video acquisition and recovery. Video CS is complicated by the ephemeral nature of dynamic events, which makes direct extensions of standard CS imaging architectures and signal models infeasible. In this paper, we develop a new framework for video CS for dynamic textured scenes that models the evolution of the scene as a linear dynamical system (LDS). This reduces the video recovery problem to first estimating the model parameters of the LDS from compressive measurements, from which the image frames are then reconstructed. We exploit the low-dimensional dynamic parameters (the state sequence) and highdimensional static parameters (the observation matrix) of the LDS to devise a novel compressive measurement strategy that measures only the dynamic part of the scene at each instant and accumulates measurements over time to estimate the static parameters. This enables us to considerably lower the compressive measurement rate considerably. We validate our approach with a range of experiments including classification experiments that highlight the effectiveness of the proposed approach.

COMPRESSIVEVIDEOSAMPLING

Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to significantly reduce the sampling rate of video. A practical system is developed that first splits each video frame into non-overlapping blocks of equal size. Compressive sampling is then performed on sparse blocks, determined by predicting sparsity based on previous reference frames which are sampled conventionally. The blocks identified as sparse are reconstructed using the orthogonal matching pursuit algorithm, whereas the remaining blocks are sampled fully. Thus, the acquisition complexity and sampling time are reduced, while exploiting the local sparsity, within the DCT domain, of a video stream. Our simulation results indicate up to 50% saving in acquisition for Y-components of video with very small performance loss compared to traditional sampling.

Surveillance Video Analysis Using Compressive Sensing With Low Latency

Bell Labs Technical Journal, 2014

We propose a method for analysis of surveillance video by using low rank and sparse decomposition (LRSD) with low latency combined with compressive sensing to segment the background and extract moving objects in a surveillance video. Video is acquired by compressive measurements, and the measurements are used to analyze the video by a low rank and sparse decomposition of a matrix. The low rank component represents the background, and the sparse component, which is obtained in a tight wavelet frame domain, is used to identify moving objects in the surveillance video. An important feature of the proposed low latency method is that the decomposition can be performed with a small number of video frames, which reduces latency in the reconstruction and makes it possible for real time processing of surveillance video. The low latency method is both justifi ed theoretically and validated experimentally. © 2014 Alcatel-Lucent.

Sparse Signal Representation, Sampling, and Recovery in Compressive Sensing Frameworks

IEEE Access

Compressive sensing allows the reconstruction of original signals from a much smaller number of samples as compared to the Nyquist sampling rate. The effectiveness of compressive sensing motivated the researchers for its deployment in a variety of application areas. The use of an efficient sampling matrix for high-performance recovery algorithms improves the performance of the compressive sensing framework significantly. This paper presents the underlying concepts of compressive sensing as well as previous work done in targeted domains in accordance with the various application areas. To develop prospects within the available functional blocks of compressive sensing frameworks, a diverse range of application areas are investigated. The three fundamental elements of a compressive sensing framework (signal sparsity, subsampling, and reconstruction) are thoroughly reviewed in this work by becoming acquainted with the key research gaps previously identified by the research community. Similarly, the basic mathematical formulation is used to outline some primary performance evaluation metrics for 1D and 2D compressive sensing. INDEX TERMS Compressed sensing, compressive sampling, reconstruction algorithms, sensing matrix. IRFAN AHMED received the B.Sc. and M.Sc. degrees in electrical engineering and the Ph.D. degree in computer systems engineering from the University of Engineering & Technology Peshawar. He is currently employed as a full-time Lecturer with the