AWG-Detector: A machine learning tool for the accurate detection of Anomalies due to Wind Gusts (AWG) in the adaptive Altitude control unit of an Aerosonde unmanned Aerial Vehicle (original) (raw)
Related papers
Fault Detection and Diagnosis for Drones using Machine Learning
2019
This new era of small UAVs currently populating the airspace introduces many safety concerns, due to the absence of a pilot onboard and the less accurate nature of the sensors. This necessitates intelligent approaches to address the emergency situations that will inevitably arise for all classes of UAV operations as defined by EASA (European Aviation Safety Agency). Hardware limitations for these small vehicles point to the utilization of analytical redundancy, rather than to the usual practice of hardware redundancy in manned aviation. In the course of this study, machine learning practices are implemented in order to diagnose faults on a small fixed-wing UAV to avoid the burden of accurate modeling needed in model-based fault diagnosis. A supervised classification method, SVM (Support Vector Machines) is used to classify the faults. The data used to diagnose the faults are gyro and accelerometer measurements. The idea to restrict the data set to accelerometer and gyro measurements...
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this s...
How to Support the Machine Learning Take-Off: Challenges and Hints for Achieving Intelligent UAVs
2017
Unmanned Aerial Vehicles (UAVs) are getting momentum. A growing number of industries and scientific institutions are focusing on these devices. UAVs can be used for a really wide spectrum of civilian and military applications. Usually these devices run on batteries, thus it is fundamental to efficiently exploit their hardware to reduce their energy footprint. A key aspect in facing the “energy issue” is the exploitation of properly designed solutions in order to target the energy- and hardware-constraints characterising these devices. However, there are not universal approaches easing the implementation of ad-hoc solutions for UAVs; it just depends on the class of problems to be faced. As matter of fact, targeting machine-learning solutions to UAVs could foster the development of a wide range of interesting application. This contribution is aimed at sketching the challenges deriving from the porting of machine-learning solutions, and the associated requirements, to highly distribute...
Neural-Fly enables rapid learning for agile flight in strong winds
Science Robotics
Executing safe and precise flight maneuvers in dynamic high-speed winds is important for the ongoing commoditization of uninhabited aerial vehicles (UAVs). However, because the relationship between various wind conditions and its effect on aircraft maneuverability is not well understood, it is challenging to design effective robot controllers using traditional control design methods. We present Neural-Fly, a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning. Neural-Fly builds on two key observations that aerodynamics in different wind conditions share a common representation and that the wind-specific part lies in a low-dimensional space. To that end, Neural-Fly uses a proposed learning algorithm, domain adversarially invariant meta-learning (DAIML), to learn the shared representation, only using 12 minutes of flight data. With the learned representation as a basis, Neural-Fly then uses a composite adaptatio...
A reawakening of Machine Learning Application in Unmanned Aerial Vehicle: Future Research Motivation
EAI Endorsed Transactions on Internet of Things
Machine learning (ML) entails artificial procedures that improve robotically through experience and using data. Supervised, unsupervised, semi-supervised, and Reinforcement Learning (RL) are the main types of ML. This study mainly focuses on RL and Deep learning, since necessitates mainly sequential and consecutive decision-making context. This is a comparison to supervised and non-supervised learning due to the interactive nature of the environment. Exploiting a forthcoming accumulative compensation and its stimulus of machines, complex policy decisions. The study further analyses and presents ML perspectives depicting state-of-the-art developments with advancement, relatively depicting the future trend of RL based on its applicability in technology. It's a challenge to an Internet of Things (IoT) and demonstrates what possibly can be adopted as a solution. This study presented a summarized perspective on identified arenas on the analysis of RL. The study scrutinized that a rea...
Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
2017
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this s...