Nephila Clavipes Dragline Silk: Approaches to a Recombinantly Produced Silk Protein (original) (raw)

Nephila clavipes Flagelliform Silk-Like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers

Biomacromolecules, 2013

Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are: GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers.

Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

2007

Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (.200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (.9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.

Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers

Journal of Materials Science, 2007

Bacteria were genetically engineered to produce two spider silk protein variants composed of basic repeat units combining a flagelliform elastic motif ([GPGGX] 4) and a major ampullate silk strength motif ([linker/poly-alanine]. The secondary structures of the pure recombinant proteins in solution were determined by circular dichroism. The data presented suggest that the nature of the 5th and 10th amino acid (X) in the [GPGGX] 2 elastic motif and temperature have an impact on the amount of bsheet structures present in the proteins. More specifically, increasing temperatures seem to be positively correlated with b-sheet formation for both proteins and this state is irreversible or reversible when both X (5th and 10th) in the elastic motif are hydrophilic or hydrophobic respectively. Moreover, each pure silk-like protein was able to spontaneously self-assemble into films from aqueous solutions. Two kinds of synthetic fibers were made by pulling fibers from these preassembled films as well as spinning fibers from each protein resolubilized in HFIP. The mechanical data show that the pulled fibers are far tougher than the spun fibers suggesting a better fiber organization.

Recombinant DNA production of spider silk proteins

Microbial biotechnology, 2013

Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks.

Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

PLoS ONE, 2012

Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strength. AcSp1 in Argiope trifasciata contains a 200-aa sequence motif that is repeated at least 14 times. Here, we produced in E. coli recombinant proteins consisting of only one to four of the 200-aa AcSp1 repeats, designated W 1 to W 4 . We observed that purified W 2 , W 3 and W 4 proteins could be induced to form silk-like fibers by shear forces in a physiological buffer. The fibers formed by W 4 were ,3.4 mm in diameter and up to 10 cm long. They showed an average tensile strength of 115 MPa, elasticity of 37%, and toughness of 34 J cm 23 . The smaller W 2 protein formed fewer fibers and required a higher protein concentration to form fibers, whereas the smallest W 1 protein did not form silk-like fibers, indicating that a minimum of two of the 200-aa repeats was required for fiber formation. Microscopic examinations revealed structural features indicating an assembly of the proteins into spherical structures, fibrils, and silk-like fibers. CD and Raman spectral analysis of protein secondary structures suggested a transition from predominantly a-helical in solution to increasingly b-sheet in fibers.

Bioinspired Fibers Follow the Track of Natural Spider Silk

Macromolecules, 2011

The mechanical behavior and microstructure of bioinspired fibers spun from solutions of recombinant spidroin-like proteins were extensively characterized, and compared with those of natural spider silk fibers. It is confirmed that high performance bioinspired fibers indistinguishable from natural spider silk up to large strains can be produced through genetic engineering and conventional spinning technologies. It is also found that fibers spun from spidroin-like proteins that contain different motifs of sequence exhibit variations in their microstructure in terms of crystallinity and chain alignment, but these differences are not reflected in distinct tensile properties. This similarity in terms of their mechanical behavior indicates that bioinspired fibers are largely independent of their exact sequence of recombinant proteins and, in particular, of their proline content. Finally, it is shown that the largest differences between natural and bioinspired fibers are found at very large deformations, marking the ultimate challenge in the synthesis of silk-like fibers.

Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins

International Journal of Biological Macromolecules, 1999

Several types of silks and silk protein coding genes have been characterized from orb-web weaving spiders. When the protein sequences of major ampullate, minor ampullate, and flagelliform silks from Nephila cla6ipes are compared, they can be summarized as sets of shared amino acid motifs. Four of these motifs and their likely secondary structures are described. Each structural element, termed a module, is then associated with its impact on the mechanical properties of a silk fiber. In particular, correlations are drawn between an alanine-rich 'crystalline module' and tensile strength and between a proline-containing 'elasticity module' and extensibility.

Doing What Spiders Cannot—A Road Map to Supreme Artificial Silk Fibers

ACS Nano, 2021

Fabricating artificial spider silk fibers in bulk scale has been a major goal in materials science for centuries. Two main routes have emerged for making such fibers. One method uses biomimetics in which the spider silk proteins (spidroins) are produced under nativelike conditions and then spun into fibers in a process that captures the natural, complex molecular mechanisms. However, these fibers do not yet match the mechanical properties of native silk fibers, potentially due to the small size of the designed spidroin used. The second route builds on biotechnological progress that enables production of large spidroins that can be spun into fibers by using organic solvents. With this approach, fibers that equal the native material in terms of mechanical properties can be manufactured, but the yields are too low for economically sustainable production. Hence, the need for new ideas is urgent. Herein, we introduce a structural-biology-based approach for engineering artificial spidroins that circumvents the laws with which spidroins, being secretory proteins, have to comply in order to avoid membrane insertion and provide a road map to the production of biomimetic silk fibers with improved mechanical properties.

Molecular mechanisms of spider silk

Experientia, 2006

Spiders spin high-performance silks through the expression and assembly of tissue-restricted fibroin proteins. Spider silks are composite protein biopolymers that have complex microstructures. Retrieval of cDNAs and genomic DNAs encoding silk fibroins has revealed an association between the protein sequences and structure-property relationships. However, before spider silks can be subject to genetic engineering for commercial applications, the complete protein sequences and their functions, as well as the details of the spinning mechanism, will require additional progress and collaborative efforts in the areas of biochemistry, molecular biology and material science. Novel approaches to reveal additional molecular constituents embedded in the spider fibers, as well as cloning strategies to manipulate the genes for expression, will continue to be important aspects of spider biology research. Here we summarize the molecular characteristics of the different spider fibroins, the mechanical properties and assembly process of spidroins and the advances in protein expression systems used for recombinant silk production. We also highlight different technical approaches being used to elucidate the molecular constituents of silk fibers.