Evaluation of ANN, LDA and Decision Trees for EEG Based Brain Computer Interface (original) (raw)
Related papers
Using the EEG Motor Movement/Imagery database there is proposed an off-line analysis for a brain computer interface (BCI) paradigm. The purpose of the quantitative research is to compare classifier in order to determinate which of them has highest rates of classification. The power spectral density method is used to evaluate the (de)synchronizations that appear on Mu rhythm. The features extracted from EEG signals are classified using linear discriminant classifier (LDA), quadratic classifier (QDA) and classifier based on Mahalanobis distance (MD). The differences between LDA, QDA and MD are small, but the superiority of QDA was sustained by analysis of variance (ANOVA).
Bulletin of Electrical Engineering and Informatics, 2019
This paper focuses on classification of motor imagery in Brain Computer Interface (BCI) by using classifiers from machine learning technique. The BCI system consists of two main steps which are feature extraction and classification. The Fast Fourier Transform (FFT) features is extracted from the electroencephalography (EEG) signals to transform the signals into frequency domain. Due to the high dimensionality of data resulting from the feature extraction stage, the Linear Discriminant Analysis (LDA) is used to minimize the number of dimension by finding the feature subspace that optimizes class separability. Five classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, Decision Tree and Logistic Regression are used in the study. The performance was tested by using Dataset 1 from BCI Competition IV which consists of imaginary hand and foot movement EEG data. As a result, SVM, Logistic Regression and Naïve Bayes classifier achieved the highest accuracy with 89.09% in AUC measurement.
Reducing Electrodes based on Decision Tree Classification for EEG Motor Movement Data
International Journal of Engineering & Technology
Analysis of EEG data is one of the most important parts of Brain Computer Interface systems because EEG data consists of a substantial amount of crucial information that can be used for better study and improvements in BCI system. One of the problems with the analysis of EEG is the large amount of data that is produced, some of which might not be useful for the analysis. Therefore identifying the relevant data from the large amount of EEG data is important for better analysis. The objective of this study is to find out the performance of Random Forest classifier on the motor movement EEG data and reducing the number of electrodes that are considered in the EEG recording and analysis so that the amount of data that is produced through EEG recording is reduced and only relevant electrodes are considered in the analysis. The dataset used in the study is Physionet motor movement/imagery data which consists of EEG recordings obtained using 64 electrodes. These 64 electrodes were ranked b...
A Comprehensive Analysis on EEG Signal Classification Using Advanced Computational Analysis
2017
Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user’s neural features with robotic machines to perform tasks. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. In the initial work, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the ima...
International Journal of Advanced Computer Science and Applications
In this paper, we propose an automated computer platform for the purpose of classifying Electroencephalography (EEG) signals associated with left and right hand movements using a hybrid system that uses advanced feature extraction techniques and machine learning algorithms. It is known that EEG represents the brain activity by the electrical voltage fluctuations along the scalp, and Brain-Computer Interface (BCI) is a device that enables the use of the brain’s neural activity to communicate with others or to control machines, artificial limbs, or robots without direct physical movements. In our research work, we aspired to find the best feature extraction method that enables the differentiation between left and right executed fist movements through various classification algorithms. The EEG dataset used in this research was created and contributed to PhysioNet by the developers of the BCI2000 instrumentation system. Data was preprocessed using the EEGLAB MATLAB toolbox and artifacts removal was done using AAR. Data was epoched on the basis of Event-Related (De) Synchronization (ERD/ERS) and movement-related cortical potentials (MRCP) features. Mu/beta rhythms were isolated for the ERD/ERS analysis and delta rhythms were isolated for the MRCP analysis. The Independent Component Analysis (ICA) spatial filter was applied on related channels for noise reduction and isolation of both artifactually and neutrally generated EEG sources. The final feature vector included the ERD, ERS, and MRCP features in addition to the mean, power and energy of the activations of the resulting Independent Components (ICs) of the epoched feature datasets. The datasets were inputted into two machine-learning algorithms: Neural Networks (NNs) and Support Vector Machines (SVMs). Intensive experiments were carried out and optimum classification performances of 89.8 and 97.1 were obtained using NN and SVM, respectively. This research shows that this method of feature extraction holds some promise for the classification of various pairs of motor movements, which can be used in a BCI context to mentally control a computer or machine.
Classification of EEG Signal for Movement Intentions-based Brain Computer Interfaces
2014
Abstract : Brain Computer Interface (BCI) is a new feature of human-machine interaction for a direct communication channel from the brain. It involves the extraction of information from brain activity and translates it into system commands using feature extraction and classification algorithms. The study uses signals previously recorded in the BCI lab. Feature selection and classification were based on the Neural Network (NN), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). The results of classification show that LDA classifier recorded the highest accuracy in 3 and 4-class of movement compared with SVM and NN classifiers. LDA classified the 4-class of movements at central channel and single channel with the average accuracy of 43.75% and 42%. Further, LDA performed better result in 3-class of movement, with an average accuracy 62%. The highest accuracy for bandpower performed by LDA classifier with average accuracy 41.75 % at beta band.