A finite element model for tides and resonance along the north coast of British Columbia (original) (raw)

1993, Journal of Geophysical Research: Oceans

A finite element, barotropic, tidal model is developed for the north coast of British Columbia. The model is run with eight tidal constituents and the results are compared with the Flather (1987) finite difference model, and with extensive tide gauge and current meter observations. Although the tidal potential, Earth tide, and loading tide are included in the forcing, their inclusion is shown to change the largest M2 amplitudes by only 2.5% and the largest K1 amplitudes by less than 1%. Root mean square differences between observed and calculated sea level amplitudes and phases are within 1.9 cm and 2.9 ΓΈ for all but one constituent, but the model currents do not in general, compare as favourably. The barotropic currents observed in Hecate Strait are reproduced well, but elsewhere evidence is shown that model inaccuracies are due to baroclinic effects. Tidal residual currents calculated by the model suggest the existence of eddies off the tip of Cape St. James, Cape Chacon, and around Goose Island and Learmonth Banks. The shallow water constituents in Hecate Strait are shown to have significant contributions from the constructive interference of signals propagating into Dixon Entrance and Queen Charlotte Sound. Using the model, the longest resonant period of the system is estimated to be 7.6 hours with an energy dissipation parameter, Q, of 9.5.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact