Specific Inhibition of Bacterial β-Glucuronidase by Pyrazolo[4,3-c]quinoline Derivatives via a pH-Dependent Manner To Suppress Chemotherapy-Induced Intestinal Toxicity (original) (raw)

Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo

Pharmacological Research, 2018

Irinotecan (CPT-11), a first-line chemotherapy for advanced colorectal cancer, causes serious diarrhea in patients receiving treatment. The underlying mechanism has been shown that the active metabolite of CPT-11, SN-38, is metabolized to the inactive metabolite SN-38 glucuronide (SN-38G) during hepatic glucuronidation, and subsequently is exported into the intestine, where SN-38G is hydrolyzed by bacterial -glucuronidase (G) to be SN-38, thus leading to intestinal toxicity. Thus, inhibition of the intestinal bacterial G activity is expected to prevent CPT-11-induced diarrhea. However, the effects of such inhibition on serum pharmacokinetics of SN-38, the key determinant of CPT-11 treatment, are uncertain. Here, we determined the effects of a potent E. coli G (eG)-specific inhibitor pyrazolo[4,3-c]quinoline derivative (TCH-3562) for potential use in tumor therapy. TCH-3562 exhibited efficacious inhibitory potency of endogenous G activity in two anaerobes, Eubacterium sp. and Peptostreptococcus anaerobius. Oral administration of TCH-3562 also effectively reduced the bacterial G activity in mice intestine. Moreover, pharmacokinetic analysis of TCH-3562 revealed a relatively low amount of TCH-3562 was detected in the plasma whereas the majority of TCH-3562 was found in the feces. Importantly, co-treatment of CPT-11 and TCH-3562 did not decrease active SN-38 level in mice plasma. Finally, we established that TCH-3562 as an adjuvant treatment showed protective effects on CPT-11-induced diarrhea and had no negative effects on the therapeutic efficacy of CPT-11 in tumor-bearing mice. Therefore, inhibiting of the intestinal bacterial G activity by the specific inhibitor, TCH-3562, is promising to prevent CPT-11-induced diarrhea while maintaining CPT-11 anti-tumor efficacy that may have clinical potentials for the treatment with CPT-11.

Potential Repurposing of Known Drugs as Potent Bacterial β-Glucuronidase Inhibitors

SLAS Discovery, 2012

The active metabolite of the chemotherapeutic irinotecan, SN-38, is detoxified through glucuronidation and then excreted into the gastrointestinal tract. Intestinal bacteria convert the glucuronidated metabolite back to the toxic SN-38 using β-glucuronidase (GUS), resulting in debilitating diarrhea. Inhibiting GUS activity may relieve this side effect of irinotecan. In this study, we sought to determine whether any known drugs have GUS inhibitory activity. We screened a library of Food and Drug Administration–approved drugs with a cell-free biochemical enzyme assay using purified bacterial GUS. After triage, five drugs were confirmed to inhibit purified bacterial GUS. Three of these were the monoamine oxidase inhibitors nialamide, isocarboxazid, and phenelzine with average IC50 values for inhibiting GUS of 71, 128, and 2300 nM, respectively. The tricyclic antidepressant amoxapine (IC50 = 388 nM) and the antimalarial mefloquine (IC50 = 1.2 µM) also had activity. Nialamide, isocarboxa...

A High Throughput Assay for Discovery of Bacterial β-Glucuronidase Inhibitors

Current chemical genomics, 2011

CPT-11 is a widely-used anti-cancer drug that is converted in vivo to its active metabolite, SN-38. In the liver, enzymes detoxify SN-38 by coupling it to a glucuronidate moiety and this inactive compound (SN-38G) is excreted into the gastrointestinal tract. In the intestine, commensal bacteria convert the SN-38G back to the active and toxic SN-38 using bacterial β-glucuronidase enzyme (GUS). This intestinal SN-38 causes debilitating diarrhea that prevents dose-intensification and efficacy in a significant fraction of patients undergoing CPT-11 treatment for cancer. This CPT-11 metabolic pathway suggests that small molecule inhibitors of GUS may have utility as novel therapeutics for prevention of dose-limiting diarrhea resulting from CPT-11 therapy. To identify chemical inhibitors of GUS activity, we employed and validated a high throughput, fluorescence-based biochemical assay and used this assay to screen a compound library. Novel inhibitors of GUS were identified with IC(50) val...

Old drug new use--amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity

Clinical cancer research : an official journal of the American Association for Cancer Research, 2014

Irinotecan (CPT-11) induced diarrhea occurs frequently in patients with cancer and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the nontoxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as a potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11-induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by Escherichia coli GUS enzyme and cell-based assay. Low-dosage daily oral administration was designed to use along with CPT...

Discovery of Specific Inhibitors for Intestinal E. coli β-Glucuronidase through In Silico Virtual Screening

TheScientificWorldJournal, 2015

Glucuronidation is a major metabolism process of detoxification for carcinogens, 4-(methylnitrosamino)-1-(3-pyridy)-1-butanone (NNK) and 1,2-dimethylhydrazine (DMH), of reactive oxygen species (ROS). However, intestinal E. coli β-glucuronidase (eβG) has been considered pivotal to colorectal carcinogenesis. Specific inhibition of eβG may prevent reactivating the glucuronide-carcinogen and protect the intestine from ROS-mediated carcinogenesis. In order to develop specific eβG inhibitors, we found that 59 candidate compounds obtained from the initial virtual screening had high inhibition specificity against eβG but not human βG. In particular, we found that compounds 7145 and 4041 with naphthalenylidene-benzenesulfonamide (NYBS) are highly effective and selective to inhibit eβG activity. Compound 4041 (IC50 = 2.8 μM) shows a higher inhibiting ability than compound 7145 (IC50 = 31.6 μM) against eβG. Furthermore, the molecular docking analysis indicates that compound 4041 has two hy...

Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives

Archiv der Pharmazie, 2020

Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC 50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.

Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

Science, 2010

The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. Camptothecin, a potent antineoplastic compound, was added to the National Cancer Institute natural products screening set in 1966. It poisons the catalytic cycle of human topoisomerase I, which manages the super-helical tension associated with DNA metabolism and is preferentially active in rapidly dividing cells (1, 2). In preliminary clinical trials, camptothecin exhibited marked toxicity and poor bioavailability (3). Although its derivatives topotecan and CPT-11 (also called irinotecan) are now in clinical use (3), they

Novel Amino Acid Derivatives of Quinolines as Potential Antibacterial and Fluorophore Agents

Scientia Pharmaceutica, 2020

A new series of amino acid derivatives of quinolines was synthesized through the hydrolysis of amino acid methyl esters of quinoline carboxamides with alkali hydroxide. The compounds were purified on silica gel by column chromatography and further characterized by TLC, NMR and ESI-TOF mass spectrometry. All compounds were screened for in vitro antimicrobial activity against different bacterial strains using the microdilution method. Most of the synthesized amino acid-quinolines show more potent or equipotent inhibitory action against the tested bacteria than their correspond esters. In addition, many of them exhibit fluorescent properties and could possibly be utilized as fluorophores. Molecular docking and simulation studies of the compounds at putative bacterial target enzymes suggest that the antimicrobial potency of these synthesized analogues could be due to enzyme inhibition via their favorable binding at the fluoroquinolone binding site at the GyrA subunit of DNA gyrase and/o...

Molecular Modelling, Docking and Pharmacokinetic Studies of N-Arylidenequinoline-3-Carbohydrazides Analogs as Novel β-Glucuronidase Inhibitors

Journal of the Mexican Chemical Society, 2019

Quantitative structure-activity relationships (QSAR) modelling on 30 N-Arylidenequinoline-3-carbohydrazides analogs was performed using Multi-Linear Regression (MLR) analysis adopting Genetic Function Algorithm (GFA) method. Semi empirical method using PM6 basis set was used for complete geometry optimization of the data set. The best model was chosen based on its statistical fit due to it good internal and external validations. From the Williams plot, it can be inferred that the reported model can make prediction of new compounds that are not within the data set. The molecular docking study showed that, the most active chemical in the data set was better than the standard β-glucuronidase inhibitor both in terms of binding scores and the amino acid residues that interacted with the drug and β-glucuronidase enzyme. The Pharmacokinetic studies indicated that none of the chemicals violated any of the condition set by the Lipinski′s Rule of five which confirm the bioavailability of thes...