Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage (original) (raw)

2020, Environmental Science and Pollution Research

Constructed wetlands are low-cost, natural technologies that are often employed for the treatment of different types of wastewater. In this study, landfill leachate and municipal wastewater were co-treated by the three parallel two-stage Phragmites-or Vetiver-based constructed wetland mesocosms. Two-stage wetland mesocosms included vertical flow (VF) units as the first stage, followed by horizontal flow (HF)/surface flow (SF)/floating treatment (FT) units. VF and HF wetland mesocosms were filled with gravel, steel slag, concrete block, and intermittent carbon-saturated ceramic filters as substrates. Mean input nitrogen, organics, and phosphorus load across first stages were 75 g N/m 2 day, 283 g COD/m 2 day, 88 g BOD/m 2 day, and 10 g P/ m 2 day, respectively. N and P accumulation rate was not substantial (< 10%) with respect to total removal in most wetland mesocosms. Gravel-based VF wetland mesocosm achieved better NH 4-N and BOD removal (55-59%) during landfill leachate treatment phase, when compared with co-treatment periods (12-52%). Slag-concrete-and ceramic filter-based VF wetland mesocosms maintained stable NH 4-N and BOD removals; the former wetland mesocosm was the most efficient VF unit (than other two wetland mesocosms) due to media characteristics. Media-based adsorption accelerated P removal (93%) in slagconcrete-based VF wetland mesocosm. Carbon scarcity limited denitrification in all VF wetland mesocosms; removal of TN was < 32%. Second stage wetland mesocosms achieved higher nitrogen (85-92%), organics (66-90%), and phosphorus (97-100%) removals regardless of operational variations; low input load, long retention time, media, and rhizosphere enhanced removal performances, particularly in HF and FT wetland mesocosms. In general, this study demonstrates potential application of two-stage wetland mesocosms for landfill leachate treatment or co-treatment with municipal sewage.