3D Bioprinting of Human Hollow Organs (original) (raw)
Related papers
3D Bioprinting for Tissue and Organ Fabrication
Annals of biomedical engineering, 2016
The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technolo...
3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs
Engineering, 2019
Three-dimensional (3D) bioprinting is a rapidly growing technology that has been widely used in tissue engineering, disease studies, and drug screening. It provides the unprecedented capacity of depositing various types of biomaterials, cells, and biomolecules in a layer-by-layer fashion, with precisely controlled spatial distribution. This technology is expected to address the organ-shortage issue in the future. In this review, we first introduce three categories of 3D bioprinting strategies: inkjet-based printing (IBP), extrusion-based printing (EBP), and light-based printing (LBP). Biomaterials and cells, which are normally referred to as ''bioinks," are then discussed. We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures, including cartilage, bone, skin, muscle, vascular network, and so on. The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well. Finally, the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.
Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine
Regenerative Medicine Frontiers, 2019
Three-dimensional (3D) bioprinting is an emerging manufacturing technology that layers living cells and biocompatible natural or synthetic materials to build complex, functional living tissue with the requisite 3D geometries. This technology holds tremendous promise across a plethora of applications as diverse as regenerative medicine, pathophysiological studies, and drug testing. Despite some success demonstrated in early attempts to recreate complex tissue structures, however, the field of bioprinting is very much in its infancy. There are a variety of challenges to building viable, functional, and lasting 3D structures, not the least of which is translation from a research to a clinical setting. In this review, the current translational status of 3D bioprinting is assessed for several major tissue types in the body (skin, bone/cartilage, cardiovascular, central/peripheral nervous systems, skeletal muscle, kidney, and liver), recent breakthroughs and current challenges are highlighted, and future prospects for this exciting research field are discussed. We begin with an overview of the technology itself, followed by a detailed discussion of the current approaches relevant for bioprinting different tissues for regenerative medicine.
Biotechnology kiosk, 2022
In view of the very expensive modern healthcare system, sudden loss or failure of organs and tissues could pose a very difficult and costly medical problem to patients. Further, the limited supply of organs globally that a patient can afford for replacement in the event of an organ failure makes the problem even more challenging and complicated. These medical and healthcare challenges have triggered research and developments into tissue engineering to advance the field of regenerative medicine. Especially, the research focus has been on the design, development and optimization of a cell-scaffold-microenvironment to promote the regeneration of various types of tissue including skin, cartilage, bone, tendon and cardiac tissue, to name a few. Studies have been undertaken to produce functional three-dimensional (3D) tissue substitutes or constructs that are based on bio scaffolds from the ground up. To this end, bioprinting strategies have been considered for fabrication of complex 3D functional living tissues or artificial organs. Here, we describe some notable advances in laser bioprinting enabled tissue engineering, which is a rapidly emerging field in 3D bio fabrication technology for applications in regenerative medicine.
Towards artificial tissue models: past, present, and future of 3D bioprinting
Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research. RECEIVED
Regenerative Engineering and Translational Medicine, 2021
Organ or cell transplantation is medically evaluated for end-stage failure saving or extending the lives of thousands of patients who are suffering from organ failure disorders. The unavailability of adequate organs for transplantation to meet the existing demand is a major challenge in the medical field. This led to day-day-increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the queue. Recently, technological advancements in the field of biogenerative engineering have the potential to regenerate tissues and, in some cases, create new tissues and organs. In this context, major advances and innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact on the scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the decellularization of organs and using this as a scaffold for generating new organs through the recellularization process shows promising results. This review discussed about current approaches for tissue and organ engineering including methods of scaffold designing, recent advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D bioprinting technique in the field of medicine. Besides this, information about commercially available 3D printers has also been included in this article. Lay Summary Today's need for organs for the transplantation process in order to save a patient's life or to enhance the survival rate of diseased one is the prime concern among the scientific community. Recent, advances in the field of biogenerative engineering have the potential to regenerate tissues and create organs compatible with the patient's body. In this context, major advances and innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact on the scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the decellularization of organs and using this as a scaffold for generating new organs through the recellularization process shows promising results. This review dealt with the current approaches for tissue and organ engineering including methods of scaffold designing, recent advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D bioprinting technique in the field of medicine. Furthermore, information about commercially available 3D printers has also been included in this article.
3D Bioprinting of Tissues and Organs
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
3D Bioprinting Stem Cell Derived Tissues
Cellular and Molecular Bioengineering, 2018
Stem cells offer tremendous promise for regenerative medicine as they can become a variety of cell types. They also continuously proliferate, providing a renewable source of cells. Recently, it has been found that 3D printing constructs using stem cells, can generate models representing healthy or diseased tissues, as well as substitutes for diseased and damaged tissues. Here, we review the current state of the field of 3D printing stem cell derived tissues. First, we cover 3D printing technologies and discuss the different types of stem cells used for tissue engineering applications. We then detail the properties required for the bioinks used when printing viable tissues from stem cells. We give relevant examples of such bioprinted tissues, including adipose tissue, blood vessels, bone, cardiac tissue, cartilage, heart valves, liver, muscle, neural tissue, and pancreas. Finally, we provide future directions for improving the current technologies, along with areas of focus for future work to translate these exciting technologies into clinical applications.
3D CELL BIOPRINTING FOR REGENERATIVE MEDICINE RESEARCH AND THERAPIES *
Tissue engineering tools and technologies are critical for regenerative medicine and the translational research supporting development of cell-based therapies. 3D cell bioprinting is a relatively new engineering tool being used to design 3D cell constructs (rather than cell suspensions) for transplantation therapies. In this review, we describe a broad range of printing technologies now being used to deliver cells and biomaterials in preclinical studies. We focus on 3D cell bioprinting, in which the building blocks (or 'bioink') used in printing process are three-dimensional cell structures, that are placed by the bioprinter into precise architectures to generate small tissues or organs. 3D cell bioprinting is a flexible research tool for basic and translational stem cell biology.
Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine
Frontiers in Bioengineering and Biotechnology, 2020
Three-dimensional (3D) printing technology allows fabricating complex and precise structures by stacking materials layer by layer. The fabrication method has a strong potential in the regenerative medicine field to produce customizable and defect-fillable scaffolds for tissue regeneration. Plus, biocompatible materials, bioactive molecules, and cells can be printed together or separately to enhance scaffolds, which can save patients who suffer from shortage of transplantable organs. There are various 3D printing techniques that depend on the types of materials, or inks, used. Here, different types of organs (bone, cartilage, heart valve, liver, and skin) that are aided by 3D printed scaffolds and printing methods that are applied in the biomedical fields are reviewed.