ER Stress-Induced Sphingosine-1-Phosphate Lyase Phosphorylation Potentiates the Mitochondrial Unfolded Protein Response (original) (raw)
Related papers
New Insights into Translational Regulation in the Endoplasmic Reticulum Unfolded Protein Response
Cold Spring Harbor Perspectives in Biology, 2012
Homeostasis of the protein-folding environment in the endoplasmic reticulum (ER) is maintained by signal transduction pathways that collectively constitute an unfolded protein response (UPR). These affect bulk protein synthesis and thereby the levels of ER stress, but also culminate in regulated expression of specific mRNAs, such as that encoding the transcription factor ATF4. Mechanisms linking eukaryotic initiation factor 2 (eIF2) phosphorylation to control of unfolded protein load in the ER were elucidated more than 10 years ago, but recent work has highlighted the diversity of processes that impinge on eIF2 activity and revealed that there are multiple mechanisms by which changes in eIF2 activity can modulate the translation of individual mRNAs. In addition, the potential for affecting this step of translation initiation pharmacologically is becoming clearer. Furthermore, it is now clear that another strand of the UPR, controlled by the endoribonuclease inositol-requiring enzyme 1 (IRE1), also affects rates of protein synthesis in stressed cells and that its effector function, mediated by the transcription factor X-box-binding protein 1 (XBP1), is subject to important mRNA-specific translational regulation. These new insights into the convergence of translational control and the UPR will be reviewed here.
Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease
Frontiers in cell and developmental biology, 2017
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review cu...
The mitochondrial unfolded protein response: Signaling from the powerhouse
Journal of Biological Chemistry, 2017
Edited by Ruma Banerjee Mitochondria are multifaceted and indispensable organelles required for cell performance. Accordingly, dysfunction to mitochondria can result in cellular decline and possibly the onset of disease. Cells use a variety of means to recover mitochondria and restore homeostasis, including the activation of retrograde pathways such as the mitochondrial unfolded protein response (UPR mt). In this Minireview, we will discuss how cells adapt to mitochondrial stress through UPR mt regulation. Furthermore, we will explore the current repertoire of biological functions that are associated with this essential stress-response pathway.
ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk—Signaling Beyond (ER) Stress Response
Biomolecules
Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological f...
Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein Response
PLoS Genetics, 2013
Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPR mt ) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPR mt , and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS-induced UPR mt . Activation of the UPR mt , but not of other stresssignaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS-induced UPR mt , suggesting that surveillance-activated defenses specifically inhibit the UPR mt but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/ Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.
Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases
Abstract Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2a, inositol-requiring enzyme 1a-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics
The International Journal of Biochemistry & Cell Biology, 2012
Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders.
Frontiers in Oncology, 2017
Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.
Regulation of the ER stress response by a mitochondrial microprotein
Nature Communications
Cellular homeostasis relies on having dedicated and coordinated responses to a variety of stresses. The accumulation of unfolded proteins in the endoplasmic reticulum (ER) is a common stress that triggers a conserved pathway called the unfolded protein response (UPR) that mitigates damage, and dysregulation of UPR underlies several debilitating diseases. Here, we discover that a previously uncharacterized 54-amino acid microprotein PIGBOS regulates UPR. PIGBOS localizes to the mitochondrial outer membrane where it interacts with the ER protein CLCC1 at ER–mitochondria contact sites. Functional studies reveal that the loss of PIGBOS leads to heightened UPR and increased cell death. The characterization of PIGBOS reveals an undiscovered role for a mitochondrial protein, in this case a microprotein, in the regulation of UPR originating in the ER. This study demonstrates microproteins to be an unappreciated class of genes that are critical for inter-organelle communication, homeostasis,...