The Neural Correlates of Cognitive Control: Successful Remembering and Intentional Forgetting (original) (raw)

Recollection after inhibition: The effects of intentional forgetting on the neural correlates of retrieval

Cognitive Neuroscience, 2016

Intentional forgetting is posited to utilize both encoding and inhibition to control what information enters long-term memory. Within the context of the directed forgetting paradigm, evidence for the role of inhibition to support forgetting has been examined primarily during encoding. Specifically, past studies have shown that when encoding processes are intentionally inhibited, information is less likely to be remembered. Despite the recruitment of such inhibitory processes, not all items are successfully forgotten. The current study examined whether items that should have been forgotten (F items), but were ultimately recollected, showed neural evidence at retrieval of having previously undergone attempted inhibition, particularly when compared to items that received "remember" instructions (R items). Results indicate that recollection of F items engaged additional activity in the prefrontal cortex, including the right inferior frontal gyrus and right superior frontal gyrus, suggesting that retrieval of these items required greater effort, most likely due to inhibitory processes that were engaged at encoding. These results suggest that inhibitory processing during attempted but unsuccessful forgetting can result in a more difficult retrieval period.

Neural markers of inhibition in human memory retrieval

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008

Retrieving particular information from memory facilitates the later retrieval of that information, but also impairs the later retrieval of related, interfering information. It has been theorized that this retrieval-induced forgetting reflects inhibition of interfering memory representations. We used event-related fMRI to investigate the functional neuroanatomy of this impaired retrieval, at the time the impairment is observed. Neural activity differences between impaired and facilitated information occurred in left ventrolateral prefrontal cortex (VLPFC, BA 45 and 47), precuneus (BA 7), and right inferior parietal lobule (IPL, BA 40). Activity in left anterior VLPFC (BA 47) and left posterior temporal cortex (BA 22), regions implicated in the controlled retrieval of weak semantic memory representations, predicted the degree of retrieval-induced forgetting. In contrast, activity in precuneus and right IPL predicted the degree of retrievalinduced facilitation. Our findings demonstrate that impairment of interfering memories and facilitation of practiced memories involve distinct neural processes, and suggest that the impairment reflects inhibition that weakens interfering memory representations.

Forgetting as an Active Process: An fMRI Investigation of Item-Method--Directed Forgetting

Cerebral Cortex, 2007

Using event-related functional magnetic resonance imaging (fMRI), we examined the blood oxygen level--dependent response associated with intentional remembering and forgetting. In an itemmethod directed forgetting paradigm, participants were presented with words, one at a time, each of which was followed after a brief delay by an instruction to Remember or Forget. Behavioral data revealed a directed forgetting effect: greater recognition of to-beremembered than to-be-forgotten words. We used this behavioral recognition data to sort the fMRI data into 4 conditions based on the combination of memory instruction and behavioral outcome. When contrasted with unintentional forgetting, intentional forgetting was associated with increased activity in hippocampus (Broadmann area [BA] 35) and superior frontal gyrus (BA10/11); when contrasted with intentional remembering, intentional forgetting was associated with activity in medial frontal gyrus (BA10), middle temporal gyrus (BA21), parahippocampal gyrus (BA34 and 35), and cingulate gyrus (BA31). Thus, intentional forgetting depends on neural structures distinct from those involved in unintentional forgetting and intentional remembering. These results challenge the standard selective rehearsal account of item-method directed forgetting and suggest that frontal control processes may be critical for directed forgetting.

Human Memory Retrieval and Inhibitory Control in the Brain: Beyond Correlational Evidence

Journal of Neuroscience, 2014

Retrieving information from long-term memory can result in the episodic forgetting of related material. One influential account states that this retrieval-induced forgetting (RIF) phenomenon reflects inhibitory mechanisms called into play to decrease retrieval competition. Recent neuroimaging studies suggested that the prefrontal cortex, which is critically engaged in inhibitory processing, is also involved in retrieval competition situations. Here, we used transcranial direct current stimulation (tDCS) to address whether inhibitory processes could be causally linked to RIF. tDCS was administered over the right dorsolateral prefrontal cortex during the retrievalpractice phase in a standard retrieval-practice paradigm. Sixty human participants were randomly assigned to anodal, cathodal, or sham-control groups. The groups showed comparable benefits for practiced items. In contrast, unlike both the sham and anodal groups, the cathodal group exhibited no RIF. This pattern is interpreted as evidence for a causal role of inhibitory mechanisms in episodic retrieval and forgetting.

The Neural Substrates of Memory Suppression: A fMRI Exploration of Directed Forgetting

PLoS ONE, 2012

This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus.

A subsequent-memory effect in dorsolateral prefrontal cortex

Cognitive Brain Research, 2003

The importance of brain regions for long-term memory encoding has been examined by comparison of encoding-related neural activity on trials in which successful recollection subsequently occurred to the encoding-related activity on trials in which successful recollection did not occur. We applied similar analyses to event-related functional magnetic resonance imaging (fMRI) data to explore the relative roles of dorsolateral and ventrolateral prefrontal cortex (PFC) regions during specific components of a working-memory (WM) maintenance task. The results of this study indicated that increases in dorsolateral PFC activity during encoding was related to subsequent retrieval-success. These results lend support to the hypothesis that ventrolateral PFC mediates a limited-capacity WM buffer that supports rehearsal maintenance functions while dorsolateral PFC mediates WM organization functions that accommodate the capacity limits of WM maintenance.

Neural Correlates of Successful and Unsuccessful Verbal Memory Encoding

Brain and Language, 2002

Recent neuroimaging studies suggest that episodic memory encoding involves a network of neocortical structures which may act interdependently with medial temporal lobe (mTL) structures to promote the formation of durable memories, and that activation in certain structures is modulated according to task performance. Functional magnetic resonance imaging (f MRI) was used to determine the neural structures recruited during a verbal episodic encoding task and to examine the relationship between activation during encoding and subsequent recognition memory performance across subjects. Our results show performance-correlated activation during encoding both in neocortical and medial temporal structures. Neocortical activations associated with later successful and unsuccessful recognition memory were found to differ not only in magnitude, but also in hemispheric laterality. These performance-related hemispheric effects, which have not been previously reported, may correspond to betweensubject differences in encoding strategy. © 2002 Elsevier Science (USA)

Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies

NeuroImage, 2011

The present study performed a quantitative meta-analysis of functional MRI studies that used a subsequent memory approach. The meta-analysis considered both subsequent memory (SM; remembered N forgotten) and subsequent forgetting (SF; forgotten N remembered) effects, restricting the data used to that concerning visual information encoding in healthy young adults. The meta-analysis of SM effects indicated that they most consistently associated with five neural regions: left inferior frontal cortex (IFC), bilateral fusiform cortex, bilateral hippocampal formation, bilateral premotor cortex (PMC), and bilateral posterior parietal cortex (PPC). Direct comparisons of the SM effects between the studies using verbal versus pictorial material and item-memory versus associative-memory tasks yielded three main sets of findings. First, the left IFC exhibited greater SM effects during verbal material than pictorial material encoding, whereas the fusiform cortex exhibited greater SM effects during pictorial material rather than verbal material encoding. Second, bilateral hippocampal regions showed greater SM effects during pictorial material encoding compared to verbal material encoding. Furthermore, the left hippocampal region showed greater SM effects during pictorialassociative versus pictorial-item encoding. Third, bilateral PMC and PPC regions, which may support attention during encoding, exhibited greater SM effects during item encoding than during associative encoding. The meta-analysis of SF effects indicated they associated mostly with default-mode network regions, including the anterior and posterior midline cortex, the bilateral temporoparietal junction, and the bilateral superior frontal cortex. Recurrent activity oscillations between the task-positive and task-negative/default-mode networks may account for trial-to-trial variability in participants' encoding performances, which is a fundamental source of both SM and SF effects. Taken together, these findings clarify the neural activity that supports successful encoding, as well as the neural activity that leads to encoding failure.

Differentiation of Human Medial Prefrontal Cortex Activity Underlies Long-Term Resistance to Forgetting in Memory

The Journal of Neuroscience, 2018

It is well known that distributing study events over time leads to better memory over long time scales, compared with massing study events together. One explanation for such long-term resistance to forgetting is that distributed study leads to neural differentiation in memory, which supports retrieval of past experiences by disambiguating highly similar memory representations. Neuroanatomical models of episodic memory retrieval propose that the hippocampus and medial prefrontal cortex (MPFC) work together to enable retrieval of behaviorally appropriate memories. However, it is not known how representations in these regions jointly support resistance to forgetting long after initial learning. Using fMRI, we measured differentiation in retrieved memory representations following an extended delay in male and female human participants. After 1 week, word-object associations were better remembered if studied across 2 d (overnight), allowing associations to be learned in distinct temporal contexts, compared with learning within a single day (same day). MPFC retrieval patterns showed differentiation for overnight relative to same day memories, whereas hippocampal patterns reflected associative retrieval success. Overnight memory differentiation in MPFC was higher for associative than item memories and higher than differentiation assessed over a brain-wide set of retrieval-active voxels. The memory-related difference in MPFC pattern differentiation correlated with memory success for overnight learning and with hippocampal-MPFC functional connectivity. These results show that learning information across days leads to differentiated MPFC memory representations, reducing forgetting after 1 week, and suggest this arises from persistent interactions between MPFC and hippocampus.

Strength of Coupling within a Mnemonic Control Network Differentiates Those Who Can and Cannot Suppress Memory Retrieval

The ability to direct our thought processes influences not only what we do, but also what we remember later. Here we sought to identify the brain network that supports the ability to control memory retrieval and to understand the neural basis of age-related changes and individual differences in the capacity for mnemonic control. To this end, we collected functional MRI data from 43 children and young adults while they attempted to retrieve or suppress retrieval of previously learned associations. Seed-based functional connectivity analyses revealed a largely right-lateralized dorsolateral prefrontal cortex-cingulate-parietal-hippocampal network that exhibited strongly correlated activity during retrieval suppression. Regardless of age, individuals who were able to suppress memory retrieval exhibited tighter coupling between key nodes in this dorsolateral prefrontal cortex-cingulate-parietal-hippocampal network than individuals who did not. Further, only those capable of mnemonic control exhibited tighter coupling during successful retrieval suppression (intentional forgetting) than during unsuccessful retrieval (unintentional forgetting). Across both children and adults, individual differences in retrieval suppression were best explained by the strength of these network interactions.