In-depth analysis of SARS-CoV-2–specific T cells reveals diverse differentiation hierarchies in vaccinated individuals (original) (raw)

mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern

Science, 2021

Immune memory after vaccination Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven highly effective at preventing severe COVID-19. However, the evolution of viral variants, and waning antibody levels over time, raise questions regarding the longevity of vaccine-induced immune protection. Goel et al . examined B and T lymphocyte responses in individuals who received SARS-CoV-2 messenger RNA vaccines. They performed a 6-month longitudinal study of individuals who never had SARS-CoV-2 infection compared with people who had recovered from SARS-CoV-2. Humoral and cellular immune memory was observed in vaccinated individuals, as were functional immune responses against the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) viral variants. Analysis of T cell activity suggested that robust cellular immune memory may prevent hospitalization by limiting the development of severe disease. —PNK

Long-lasting cellular immunity to SARS-CoV-2 following infection or vaccination and implications for booster strategies

2021

Immunization against SARS-CoV-2, the causative agent of coronavirus disease-19 (COVID-19) occurs via natural infection or vaccination. However, it is currently unknown how long infection- or vaccination-induced immunological memory will last. We performed a longitudinal evaluation of immunological memory to SARS-CoV-2 following mRNA vaccination in naïve and COVID-19 recovered individuals. We found that cellular immunity is still detectable 8 months after vaccination, while antibody levels decline significantly especially in naïve subjects. We also found that a booster injection is more efficacious in reactivating immunological memory to spike protein in naïve than in previously SARS-CoV-2 infected subjects. Finally, we observed a similar kinetics of decay of humoral and cellular immunity to SARS-CoV-2 up to one year following natural infection in a cohort of unvaccinated individuals. Short-term persistence of humoral immunity may account for reinfections and breakthrough infections,...

First dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in ex COVID-19 subjects

2021

Characterizing the adaptive immune response to COVID-19 vaccination in individuals who recovered from SARS-CoV-2 infection may define current and future clinical practice. To determine the effect of two doses BNT162b2 mRNA COVID-19 vaccination schedule in individuals who recovered from COVID-19 (ex COVID-19) compared to naïve subjects we evaluated SARS-CoV-2 spike-specific T and B cell responses, as well as specific IgG, IgM and neutralizing antibodies titres in 22 individuals who received BNT162b2 mRNA COVID-19 vaccine, 11 of which had a previous history of SARS-CoV-2 infection. Evaluations were performed before vaccination and then weekly until 7 days post second injection. Data obtained clearly showed that one vaccine dose is sufficient to increase both cellular and humoral immune response in ex COVID-19 subjects without any additional improvement after the second dose. On the contrary, the second dose is mandatory in naïve ones to further enhance the response. These results ques...

SARS-CoV-2 infection and vaccination trigger long-lived B and CD4+ T lymphocytes with implications for booster strategies

Journal of Clinical Investigation, 2022

BACKGROUND. Immunization against SARS-CoV-2, the causative agent of COVID-19, occurs via natural infection or vaccination. However, it is currently unknown how long infection-or vaccination-induced immunological memory will last. METHODS. We performed a longitudinal evaluation of immunological memory to SARS-CoV-2 up to 1 year after infection and following mRNA vaccination in naive individuals and individuals recovered from COVID-19 infection. RESULTS. We found that memory cells are still detectable 8 months after vaccination, while antibody levels decline significantly, especially in naive individuals. We also found that a booster injection is efficacious in reactivating immunological memory to spike protein in naive individuals, whereas it was ineffective in previously SARS-CoV-2-infected individuals. Finally, we observed a similar kinetics of decay of humoral and cellular immunity to SARS-CoV-2 up to 1 year following natural infection in a cohort of unvaccinated individuals. CONCLUSION. Short-term persistence of humoral immunity, together with the reduced neutralization capacity versus the currently prevailing SARS-CoV-2 variants, may account for reinfections and breakthrough infections. Long-lived memory B and CD4 + T cells may protect from severe disease development. In naive individuals, a booster dose restored optimal antispike immunity, whereas the needs for vaccinated individuals who have recovered from COVID-19 have yet to be defined.

mRNA Vaccination Induces Durable Immune Memory to SARS-CoV-2 with Continued Evolution to Variants of Concern

2021

ABSTRACTSARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naïve and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable ...

Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2

Frontiers in Immunology

A gradual decay in humoral and cellular immune responses over time upon SAR1S-CoV-2 vaccination may cause a lack of protective immunity. We conducted a longitudinal analysis of antibodies, T cells, and monocytes in 25 participants vaccinated with mRNA or ChAdOx1-S up to 12 weeks after the 3rd (booster) dose with mRNA vaccine. We observed a substantial increase in antibodies and CD8 T cells specific for the spike protein of SARS-CoV-2 after vaccination. Moreover, vaccination induced activated T cells expressing CD69, CD137 and producing IFN-γ and TNF-α. Virus-specific CD8 T cells showed predominantly memory phenotype. Although the level of antibodies and frequency of virus-specific T cells reduced 4-6 months after the 2nd dose, they were augmented after the 3rd dose followed by a decrease later. Importantly, T cells generated after the 3rd vaccination were also reactive against Omicron variant, indicated by a similar level of IFN-γ production after stimulation with Omicron peptides. ...

Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals

2021

ABSTRACTThe use of COVID-19 vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who recovered from COVID-19, compared to 21 adults who did not have prior COVID-19 diagnosis. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts following the second dose. Furthermore, SARS-CoV-2-naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas SARS-CoV-2-experienced individuals demonst...

Long-Term, CD4+ Memory T Cell Response to SARS-CoV-2

Frontiers in Immunology, 2022

The first cases of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were reported by Chinese authorities at the end of 2019. The disease spread quickly and was declared a global pandemic shortly thereafter. To respond effectively to infection and prevent viral spread, it is important to delineate the factors that affect protective immunity. Herein, a cohort of convalescent healthcare workers was recruited and their immune responses were studied over a period of 3 to 9 months following the onset of symptoms. A cross-reactive T cell response to SARS-CoV-2 and endemic coronaviruses, i.e., OC43 and NL63, was demonstrated in the infected, convalescent cohort, as well as a cohort composed of unexposed individuals. The convalescent cohort, however, displayed an increased number of SARS-CoV-2specific CD4 + T cells relative to the unexposed group. Moreover, unlike humoral immunity and quickly decreasing antibody titers, T cell immunity in convalescent individuals was maintained and stable throughout the study period. This study also suggests that, based on the higher CD4 T cell memory response against nucleocapsid antigen, future vaccine designs may include nucleocapsid as an additional antigen along with the spike protein.