Dichotomous-noise-induced pattern formation in a reaction-diffusion system (original) (raw)
We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR)-membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.