Characterization of Asphalt Mixtures Produced with Coarse and Fine Recycled Asphalt Particles (original) (raw)

Abstract

Utilizing recycled asphalt pavements (RAP) in pavement construction is known as a sustainable approach with significant economic and environmental benefits. While studying the effect of high RAP contents on the performance of hot mix asphalt (HMA) mixes has been the focus of several research projects, limited work has been done on studying the effect of RAP fraction and particle size on the overall performance of high RAP mixes produced solely with either coarse or fine RAP particles. To this end, three mixes including a conventional control mix with no RAP, a fine RAP mix (FRM) made with 35% percent fine RAP, and a coarse RAP mix (CRM) prepared with 54% of coarse RAP were designed and investigated in this study. These mixes were evaluated with respect to their rutting resistance, fatigue cracking resistance, and low temperature cracking performance. The results indicate that although the CRM had a higher RAP content, it exhibited better or at least the same performance than the FRM...

FAQs

sparkles

AI

What benefits does using RAP provide in asphalt mixtures?add

Using RAP in asphalt mixtures conserves virgin materials and reduces energy consumption, providing environmental benefits. Studies indicate that properly designed mix incorporating RAP can achieve performance at least equal to conventional materials.

How does the maximum RAP percentage affect HMA performance?add

Research has shown that incorporating over 25% RAP affects virgin binder grades by decreasing them by one grading level. However, mixes with high RAP content can still perform comparably to control mixes if designed appropriately.

What is the impact of particle size on RAP performance?add

Coarse RAP exhibits higher active binder applicability compared to fine RAP, influencing overall mix performance. Studies indicate that the contribution to mixture properties is more significant from the coarse fraction than the fine.

How does aging of RAP binder affect asphalt mix stiffness?add

The presence of high aged binder content in RAP can significantly increase stiffness in asphalt mixes, particularly when the RAP content exceeds 25%. Relying solely on black curve assumptions in gradation may misrepresent the binder's contribution.

What techniques exist to evaluate the performance of RAP mixes?add

Key performance evaluations for RAP mixes include rutting resistance tests, fatigue testing via Wöhler curves, and thermal stress restrained specimen tests. Such studies utilize varying testing temperatures to simulate real-world pavement scenarios.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (46)

  1. Kandhal, P.S.; Mallick, R.B. Pavement Recycling Guidelines for State and Local Governments: Participant's Reference Book; No. FHWA-SA-98-042;
  2. Zaumanis, M.; Mallick, R.B.; Frank, R. 100% hot mix asphalt recycling: Challenges and benefits. Transp. Res. Proced. 2016, 14, 3493-3502. [CrossRef]
  3. Federal Highway Administration. Pavement Recycling Executive Summary and Report; Federal Highway Administration: Washington, DC, USA, 1995.
  4. Bloomquist, D.; Diamond, G.; Oden, M.; Ruth, B.; Tia, M. Engineering and Environmental Aspects of Recycled Materials form Highway Construction; Western Research Institute: Laramie, WY, USA, 1993.
  5. Little, D.N.; Epps, J.A. Evaluation of Certain Structural Characteristics of Recycled Pavement Material. In Proceedings of the Association of Asphalt Paving Technologists, Louisville, KY, USA, 18-20 February 1980.
  6. Bukowski, J.R. Guidelines for the Design of Superpave Mixtures Containing Reclaimed Asphalt Pavement (RAP). In Proceedings of the Memorandum, ETG Meeting, FHWA Superpave Mixtures Expert Task Group, San Antonio, TX, USA, 28 March 1997.
  7. Kandhal, P.S.; Foo, K.Y. Designing Recycled Hot Mix Asphalt Mixtures Using Superpave Technology. In Progress of Superpave (Superior Performing Asphalt Pavement): Evaluation and Implementation; ASTM International: Washington, DC, USA, 1997.
  8. McDaniel, R.S.; Soleymani, H.; Anderson, M.R.; Turner, P.; Peterson, R. Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method; NCHRP Web document 30 Transportation Research Board; National Research Council (US): Springfield, VA, USA, 2000.
  9. Saliani, S.S.; Carter, A.; Baaj, H. Investigation of the Impact of Rap Gradation on the Effective Binder Content in Hot Mix Asphalt. In Proceedings of the Search Results CSCE 2016 Annual Conference, London, ON, Canada, 1-4 June 2016.
  10. Basueny, A.; Perraton, D.; Carter, A. Laboratory study of the effect of RAP conditioning on thermo-mechanical properties of hot mix asphalt containing RAP. Mater. Struct. 2013, 47, 1425-1450. [CrossRef]
  11. Praticò, F.G.; Vaiana, R.; Giunta, M.; Iuele, T.; Moro, A. Recycling PEMs Back to TLPAs: Is that Possible Notwithstanding RAP Variability. Appl. Mech. Mater. 2013, 253, 376-384. [CrossRef]
  12. Tavassoti-Kheiry, P.; Solaimanian, M.; Qiu, T. Characterization of high RAP/RAS asphalt mixtures using resonant column tests. J. Mater. Civ. Eng. 2016, 28, 04016143. [CrossRef]
  13. Petersen, J.C. A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships. Transp. Res. Circ. 2009, E-C140, P78.
  14. Cosentino, P.J.; Kalajian, E.H.; Shieh, C.S.; Mathurin, W.J.K.; Gomez, F.A.; Cleary, E.D.; Treeratrakoon, A. Developing Specifications for Using Recycled Asphalt Pavement as Base, Subbase or General Fill Materials, Phase II; No. FL/DOT/RMC/06650-7754; Florida Institute of Technology: Melbourne, FL, USA, 2003.
  15. Bressi, S.; Dumont, A.-G.; Pittet, M. Cluster phenomenon and partial differential aging in RAP mixtures. Constr. Build. Mater. 2015, 99, 288-297. [CrossRef]
  16. Stephens, J.E.; Mahoney, J.; Dippold, C. Determination of the PG Binder Grade to Use in a RAP Mix.Report No. JHR 00-278; Connecticut Department of Transportation also investigated the asphalt films properties for the coarse aggregates; Connecticut Department of Transportation: Storrs, CT, USA, 2001.
  17. Stroup-Gardiner, M.; Wagner, C. Use of reclaimed asphalt pavement in Superpave hot-mix asphalt applications. Transp. Res. Rec. 1999, 1681, 1-9. [CrossRef]
  18. Hassan, R. Feasibility of Using High RAP Contents in Hot Mix Asphalt. In Proceedings of the 13th International Flexible Pavements Conference, Brisbane, Australia, September 2009.
  19. Chen, J.S.; Huang, C.C.; Chu, P.Y.; Lin, K.Y. Engineering characterization of recycled asphalt concrete and aged bitumen mixed recycling agent. J. Mater. Sci. 2007, 42, 9867-9876. [CrossRef]
  20. Huang, B.; Li, G.; Vukosavljevic, D.; Shu, X.; Egan, B.K. Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement. Transp. Res. Rec. 2005, 1929, 37-45. [CrossRef]
  21. Yu, X.; Zaumanis, M.; Dos Santos, S.; Poulikakos, L.D. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 2014, 135, 162-171. [CrossRef]
  22. Moghaddam, T.B.; Baaj, H. The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Constr. Build. Mater. 2016, 114, 805-816. [CrossRef]
  23. Król, J.B.; Kowalski, K.J.; Niczke, Ł.; Radziszewski, P. Effect of bitumen fluxing using a bio-origin additive. Constr. Build. Mater. 2016, 114, 194-203. [CrossRef]
  24. Caputo, P.; Loise, V.; Ashimova, S.; Teltayev, B.; Vaiana, R.; Rossi, C.O. Inverse Laplace Transform (ILT) NMR: A powerful tool to differentiate a real rejuvenator and a softener of aged bitumen. Colloids Surf. Physicochem. Eng. Asp. 2019, 574, 154-161. [CrossRef]
  25. Huang, B.; Zhang, Z.; Kingery, W.; Zuo, G. Fatigue Crack Characteristics of HMA Mixtures Containing RAP. In Fifth International RILEM Conference on Reflective Cracking in Pavements; RILEM: Limoges, France, 2004; pp. 631-638.
  26. Al-Qadi, I.L.; Carpenter, S.H.; Roberts, G.; Ozer, H.; Aurangzeb, Q.; Elseifi, M.; Trepanier, J. Determination of Usable Residual Asphalt Binder in RAP; Illinois Center for Transportation (ICT): Rantoul, IL, USA, 2009.
  27. Roque, R.; Yan, Y.; Cocconcelli, C.; Lopp, G. Perform an Investigation of the Effects of Increased Reclaimed Asphalt Pavement (RAP) Levels in Dense Graded Friction Courses; No. RFP-OT-1/12-9033-RC; Florida Department of Transportation; Research Center: Florida, USA, 2015.
  28. Saliani, S.S.; Carter, A.; Baaj, H.; Mikhailenko, P. Characterization of Recovered Bitumen from Coarse and Fine Reclaimed Asphalt Pavement Particles. Infrastructures 2019, 4, 24. [CrossRef]
  29. Gabet, T.; Di Benedetto, H.; Perraton, D.; De Visscher, J.; Gallet, T.; Ba ńkowski, W.; Olard, F.; Grenfell, J.; Bodin, D.; Sauzéat, C. French wheel tracking round robin test on a polymer modified bitumen mixture. Mater. Struct. 2011, 44, 1031-1046. [CrossRef]
  30. Perraton, D.; Di Benedetto, H.; Sauzéat, C.; De La Roche, C.; Bankowski, W.; Partl, M.; Grenfell, J. Rutting of bituminous mixtures: Wheel tracking tests campaign analysis. Mater. Struct. 2011, 44, 969-986. [CrossRef]
  31. Rahman, F.; Hossain, M. Review and Analysis of Hamburg Wheel Tracking Device Test Data (No. KS-14-1); Department of Transportation. Bureau of Materials; Research: Manhattan, KS, USA, 2014.
  32. Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66-72. [CrossRef]
  33. Meunier, M. Élaboration d'un outil de prédiction du comportement de la chaussée à l'orniérage. Thèse de doctorat en génie de la construction, Montréal, L'école de technologie supérieure.Moneron, Revue générale des routes et des aérodromes. Ph.D. Thesis, L'école de technologie supérieure, Montreal, QC, Canada, 2012.
  34. Baaj, H.; Di Benedetto, H.; Chaverot, P. Effect of binder characteristics on fatigue of asphalt pavement using an intrinsic damage approach. Road Mater. Pavement Des. 2005, 6, 147-174. [CrossRef]
  35. Tayebali, A.A.; Bor-wen, T.; Carl, L. Monismith. Stiffness of asphalt-aggregate mixes; No. SHRP-A-388; Strategic Highway Research Program, National Research Council: Washington, DC, USA, 1994.
  36. Di Benedetto, H.; De La Roche, C. State of the Art on Stiffness Modulus and Fatigue of Bituminous Mixtures; Rilem Report; London, UK, 1998; pp. 137-180.
  37. Perraton, D.; Di Benedetto, H.; Carter, A. Correspondances entre les coefficients des modèles de fatigue dans les méthodes mécanistiques-empiriques de dimensionnement de chaussées souples. Can. J. Civ. Eng. 2011, 38, 1287-1299. [CrossRef]
  38. Olidis, C.; Hein, D. Guide for the Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures Materials Characterizatio. In Proceedings of the 2004 Annual Conference of the Transportation Association of Canada, Quebec, QC, Canada, 19-22 September 2004.
  39. Baaj, H. Comportement à la Fatigue Des Matériaux Granulaires Traités Aux Liens Hydrocarbones; Département Génie Civil et Bâtiment (DGCB); École Nationale des Travaux Publics de l'État, Lyon, INSA: Lyon, France, 2002.
  40. Di Benedetto, H.; Ashayer Soltani, A.; Chaverot, P. Fatigue Damage for Bituminous Mixtures: A Pertinent Approach. J. Assoc. Asph. Paving Technol. 1996, 65, 142-158.
  41. Tapsoba, N.; Baaj, H.; Sauzéat, C.; Di Benedetto, H.; Ech, M. 3D analysis and modelling of Thermal Stress Restrained Specimen Test (TSRST) on asphalt mixes with RAP and roofing shingles. Constr. Build. Mater. 2016, 120, 393-402. [CrossRef]
  42. Basueny, A.; Carter, A.; Perraton, D.; Vaillancourt, M. Laboratory Evaluation of Complex Modulus and Fatigue Resistance of Asphalt Mixtures with RAP. In Proceedings of the 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Nantes, France, 7-9 June 2016; pp. 521-532.
  43. Carter, A.; Paradis, M. Laboratory Characterization of the Evolution of the Thermal Cracking Resistance with the Freeze-Thaw Cycles. Available online: http://data.abacus.hr/h-a-d/radovi\_s\_kongresa/nagoya\_japan\_ 2010/90061.pdf (accessed on 25 October 2019).
  44. Baaj, H.; Ech, M.; Tapsoba, N.; Sauzeat, C.; Di Benedetto, H. Thermomechanical characterization of asphalt mixtures modified with high contents of asphalt shingle modifier (ASM ® ) and reclaimed asphalt pavement (RAP). Mater. Struct. 2013, 46, 1747-1763. [CrossRef]
  45. Perraton, D.; Proteau, M.; Carter, A.; Meunier, M.; Dufresne, R. Development of high modulus asphalt mixes for cold climate. In Proceedings of the Fifty-Ninth Annual Conference of the Canadian Technical Asphalt Association (CTAA), Winnipeg, MB, Canada, 16-19 November 2014; pp. 249-268.
  46. Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Linear viscoelastic properties of bituminous materials: From binders to mastics. Assoc. Asph. Paving Technol. 2007, 76, 488-494.