CMOS-Analogous Wafer-Scale Nanotube-on-Insulator Approach for Submicrometer Devices and Integrated Circuits Using Aligned Nanotubes (original) (raw)
Nano Letters, 2009
Abstract
Massive aligned carbon nanotubes hold great potential but also face significant integration/assembly challenges for future beyond-silicon nanoelectronics. We report a wafer-scale processing of aligned nanotube devices and integrated circuits, including progress on essential technological components such as wafer-scale synthesis of aligned nanotubes, wafer-scale transfer of nanotubes to silicon wafers, metallic nanotube removal and chemical doping, and defect-tolerant integrated nanotube circuits. We have achieved synthesis of massive aligned nanotubes on complete 4 in. quartz and sapphire substrates, which were then transferred to 4 in. Si/SiO(2) wafers. CMOS analogous fabrication was performed to yield transistors and circuits with features down to 0.5 mum, with high current density approximately 20 muA/mum and good on/off ratios. In addition, chemical doping has been used to build fully integrated complementary inverter with a gain approximately 5, and a defect-tolerant design has been employed for NAND and NOR gates. This full-wafer approach could serve as a critical foundation for future integrated nanotube circuits.
Nishant Patil hasn't uploaded this paper.
Let Nishant know you want this paper to be uploaded.
Ask for this paper to be uploaded.