Time, Chance and Quantum Theory (original) (raw)
Related papers
The logic of the future in the Everett-Wheeler understanding of quantum theory
arXiv (Cornell University), 2014
I discuss the problems of probability and the future in the Everett-Wheeler understanding of quantum theory. To resolve these, I propose an understanding of probability arising from a form of temporal logic: the probability of a future-tense proposition is identified with its truth value in a many-valued logic. I construct a lattice of tensed propositions, with truth values in the interval [0, 1], and derive logical properties of the truth values given by the usual quantum-mechanical formula for the probability of histories.
Time, Quantum Mechanics, and Probability
Synthese, 1998
A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space norm. The familiar objection that Everett's approach yields probabilities different from quantum mechanics is easily dealt with. The more fundamental question is how to interpret these probabilities consistent with the relational theory of change, and the relational theory of identity over time. I shall show that the relational theory needs nothing more than the physical, minimal criterion of identity as defined by Everett's theory, and that this ca...
The logic of the future in quantum theory
Synthese, 2016
According to quantum mechanics, statements about the future made by sentient beings like us are, in general, neither true nor false; they must satisfy a many-valued logic. I propose that the truth value of such a statement should be identified with the probability that the event it describes will occur. After reviewing the history of related ideas in logic, I argue that it gives an understanding of probability which is particularly satisfactory for use in quantum mechanics. I construct a lattice of future-tense propositions, with truth values in the interval [0, 1], and derive logical properties of these truth values given by the usual quantum-mechanical formula for the probability of a history.
A detailed interpretation of probability, and its link with quantum mechanics
Eprint Arxiv 1011 6331, 2010
In the following we revisit the frequency interpretation of probability of Richard von Mises, in order to bring the essential implicit notions in focus. Following von Mises, we argue that probability can only be defined for events that can be repeated in similar conditions, and that exhibit 'frequency stabilization'. The central idea of the present article is that the mentioned 'conditions' should be well-defined and 'partitioned'. More precisely, we will divide probabilistic systems into object, environment, and probing subsystem, and show that such partitioning allows to solve a wide variety of classic paradoxes of probability theory. As a corollary, we arrive at the surprising conclusion that at least one central idea of the orthodox interpretation of quantum mechanics is a direct consequence of the meaning of probability. More precisely, the idea that the "observer influences the quantum system" is obvious if one realizes that quantum systems are probabilistic systems; it holds for all probabilistic systems, whether quantum or classical.
Quantum probability: a reliable tool for an agent or a reliable source of reality?
Synthese, 2019
In this paper we attempt to analyze the concept of quantum probability within quantum computation and quantum computational logic. While the subjectivist interpretation of quantum probability explains it as a reliable predictive tool for an agent in order to compute measurement outcomes, the objectivist interpretation understands quantum probability as providing reliable information of a real state of affairs. After discussing these different viewpoints we propose a particular objectivist interpretation grounded on the idea that the Born rule provides information about an intensive realm of reality. We then turn our attention to the way in which the subjectivist interpretation of probability is presently applied within both quantum computation and quantum computational logic. Taking as a standpoint our proposed intensive account of quantum probability we discuss the possibilities and advantages it might open for the modeling and development of both quantum computation and quantum computational logic.
QUANTUM MECHANICS AS GENERALIZED THEORY OF PROBABILITIES
It is argued that quantum mechanics does not have merely a predictive function like other physical theories; it consists in a formalisation of the conditions of possibility of any prediction bearing upon phenomena whose circumstances of detection are also conditions of production. This is enough to explain its probabilistic status and theoretical structure. Published in: Collapse, 8, 87-121, 2014
The interpretation of quantum mechanics and of probability: Identical role of the 'observer
Eprint Arxiv 1106 3584, 2011
The aim of the article is to argue that the interpretations of quantum mechanics and of probability are much closer than usually thought. Indeed, a detailed analysis of the concept of probability (within the standard frequency theory of R. von Mises) reveals that the latter concept always refers to an observing system. The enigmatic role of the observer in the Copenhagen interpretation therefore derives from a precise understanding of probability. Besides explaining several elements of the Copenhagen interpretation, our model also allows to reinterpret recent results from 'relational quantum mechanics', and to question the premises of the 'subjective approach to quantum probabilities'.
Mathematics
The link between classical and quantum theories is discussed in terms of extensional and intensional viewpoints. The paper aims to bring evidence that classical and quantum probabilities are related by intensionalization, which means that by abandoning sets from classical probability one should obtain quantum theory. Unlike the extensional concept of a set, the intensional probability is attributed to the quantum ensemble, which is contextually dependent. The contextuality offers a consistent realization of the measurement problem, which should require the existence of the time operator. The time continuum by Brouwer has satisfied such a requirement, which makes it fundamental to mathematical physics. The statistical model it provides has been proven tremendously useful in a variety of applications.
Probabilities and Epistemic Operations in the Logics of Quantum Computation
Entropy
Quantum computation theory has inspired new forms of quantum logic, called quantum computational logics, where formulas are supposed to denote pieces of quantum information, while logical connectives are interpreted as special examples of quantum logical gates. The most natural semantics for these logics is a form of holistic semantics, where meanings behave in a contextual way. In this framework, the concept of quantum probability can assume different forms. We distinguish an absolute concept of probability, based on the idea of quantum truth, from a relative concept of probability (a form of transition-probability, connected with the notion of fidelity between quantum states). Quantum information has brought about some intriguing epistemic situations. A typical example is represented by teleportation-experiments. In some previous works we have studied a quantum version of the epistemic operations “to know”, “to believe”, “to understand”. In this article, we investigate another epi...
Quantum mechanics as a deterministic theory of a continuum of worlds
Quantum Studies: Mathematics and Foundations, 2015
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both "time" and "world" are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett's many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett's approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random "collapse of the wavefunction" caused by the measurement, while still being an objectively deterministic theory.