Algebra / Topology Stable anti-Yetter – Drinfeld modules (original) (raw)
We define and study a class of entwined modules (stable anti-Yetter–Drinfeld modules) that serve as coefficient Hopf-cyclic homology and cohomology. In particular, we explain their relationship with Yetter–Drinfeld modules and D doubles. Among sources of examples of stable anti-Yetter–Drinfeld modules, we find Hopf–Galois extensions with a version of the Miyashita–Ulbrich action. To cite this article: P.M. Hajac et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004). 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé Modules anti-Yetter–Drinfeld stables.Nous définissons et étudions une classe de modules enlacés (modules antiDrinfeld stables) qui servent de coefficients pour l’homologie et la cohomologie Hopf-cyclique. En particulier, nous exp leurs liens avec les modules de Yetter–Drinfeld et les doublets de Drinfeld. Parmi les sources d’exemples de anti-Yetter–Drinfeld stables, nous trouvons des extensions de Hopf–Galois munies d’une version transposée ...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.