Polymyxin B Resistance in El Tor Vibrio cholerae Requires Lipid Acylation Catalyzed by MsbB (original) (raw)

A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription

Infection and Immunity, 2020

Antimicrobial peptides play an important role in host defense against Vibrio cholerae . Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS , regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains.

Elucidation of a novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition

Molecular microbiology, 2011

Similar to most Gram-negative bacteria, the outer leaflet of the outer membrane of Vibrio cholerae is comprised of lipopolysaccharide. Previous reports have proposed that V. cholerae serogroups O1 and O139 synthesize structurally different lipid A domains, which anchor lipopolysaccharide within the outer membrane. In the current study, intact lipid A species of V. cholerae O1 and O139 were analysed by mass spectrometry. We demonstrate that V. cholerae serogroups associated with human disease synthesize a similar asymmetrical hexa-acylated lipid A species, bearing a myristate (C14:0) and 3-hydroxylaurate (3-OH C12:0) at the 2'- and 3'-positions respectively. A previous report from our laboratory characterized the V. cholerae LpxL homologue Vc0213, which transfers a C14:0 to the 2'-position of the glucosamine disaccharide. Our current findings identify V. cholerae Vc0212 as a novel lipid A secondary hydroxy-acyltransferase, termed LpxN, responsible for transferring the 3-h...

The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence through Endotoxin Modification

mBio, 2014

The bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surfaceexposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogen Vibrio cholerae modify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. cholerae are unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of the almEFG operon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates how V. cholerae uses a previously unknown regulatory network, independent of well-studied V. cholerae virulence factors and regulators, to respond to the host environment and cause infection.

A functional msbB acyltransferase of Photorhabdus luminescens, required for secondary lipid a acylation in gram-negative bacteria, confers resistance to anti-microbial peptides

Lebanese Science Journal, 2016

Abi Khattar Z., S. Gaudriault and A. Givaudan. 2016. A functional msbB acyltransferase of Photorhabdus luminescens, required for secondary lipid a acylation in gram-negative bacteria, confers resistance to anti-microbial peptides. Lebanese Science Journal, 17(1): 45-56. Lipid A is a potent endotoxin, and its fatty acids (lauric, myristic, and sometimes palmitic acid) anchors lipopolysaccharide (LPS) into the outer leaflet of the outer membrane of most Gram-negative bacteria. The highly anionic charge of the glucosamine lipid A moiety makes the LPS a powerful attractant for cationic antimicrobial peptides (AMPs). AMPs are major component of innate immunity that kill bacteria by permeabilization of lipid bilayers. Secondary lipid A acylation of Klebsiella pneumoniae, involving the acyltransferase LpxM (formally, msbB or WaaN) that acylates (KDO) 2-(lauroyl)-lipid IV-A with myristate during lipid A biosynthesis, has been associated with bacterial resistance to AMPs contributing to virulence in animal models. We investigated here the role of the msbB gene of the entomopathogenic bacterium Photorhabdus luminescens in AMP resistance, by functional complementation of the AMP susceptible K. pneumoniae lpxM mutant with the P. luminescens msbB gene. We showed that msbB (lpxM) gene of P. luminescens is able to enhance polymyxin B, colistin and cecropin A resistance of K. pneumoniae lpxM mutant, compared to the non-complemented mutant. However, we could not obtain any msbB mutant of Photorhabdus by performing allelic exchange experiments based on positive selection of sucrose highly resistant mutants. We thus suggest that msbB-mediated Photorhabdus lipid A acylation is essential for outer membrane low-permeability and that modification of lipid A composition, fluidity and osmosis-resistance have an important role in the ability of Photorhabdus to grow in sucrose at high concentrations.

Sensitivity to Polymyxin B in El Tor Vibrio cholerae O1 Strain, Kolkata, India

Emerging Infectious Diseases, 2015

The epidemiology of cholera, especially in Africa and Asia, has periodically changed in subtle ways (1). The recent cholera epidemic in Haiti, a Caribbean country with no cholera cases in decades, affected >500,000 persons, caused ≈8,000 deaths, and brought this illness to the forefront of Haitian public health concerns

Vibrio cholerae VibF Is Required for Vibriobactin Synthesis and Is a Member of the Family of Nonribosomal Peptide Synthetases

Journal of Bacteriology, 2000

A 7.5-kbp fragment of chromosomal DNA downstream of theVibrio cholerae vibriobactin outer membrane receptor,viuA, and the vibriobactin utilization gene,viuB, was recovered from a Sau3A lambda library of O395 chromosomal DNA. By analogy with the genetic organization of the Escherichia coli enterobactin gene cluster, in which the enterobactin biosynthetic and transport genes lie adjacent to the enterobactin outer membrane receptor, fepA, and the utilization gene, fes, the cloned DNA was examined for the ability to restore siderophore synthesis to E. coli entmutants. Cross-feeding studies demonstrated that an E. coli entF mutant complemented with the cloned DNA regained the ability to synthesize enterobactin and to grow in low-iron medium. Sequence analysis of the cloned chromosomal DNA revealed an open reading frame downstream of viuB which encoded a deduced protein of greater than 2,158 amino acids, homologous to Yersinia sp. HMWP2, Vibrio anguillarum AngR, and E. coliEntF. A mutant ...

A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics

Antimicrobial agents and chemotherapy, 2016

Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ram...

Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria

Frontiers in Microbiology, 2014

Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.