The Modular Structure of an Ontology: Atomic Decomposition towards Applications (original) (raw)
Related papers
The Modular Structure of an Ontology: Atomic Decomposition and Module Count
informatik.uni-bremen.de
Extracting a subset of a given ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of locality-based modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.
The Modular Structure of an Ontology: Atomic Decomposition
informatik.uni-bremen.de
Extracting a subset of a given ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules. However, a single module does not allow us to understand neither topicality, connectedness, structure, or superfluous parts of an ontology, nor agreement between actual and intended modeling. The strong logical properties of locality-based modules suggest that the family of all such modules of an ontology can support comprehension of the ontology as a whole. However, extracting that family is not feasible, since the number of localitybased modules of an ontology can be exponential w.r.t. its size. In this paper we report on a new approach that enables us to efficiently extract a polynomial representation of the family of all locality-based modules of an ontology. We also describe the fundamental algorithm to pursue this task, and report on experiments carried out and results obtained.
Extracting modules from ontologies: Theory and practice
2007
The ability to extract meaningful fragments from an ontology is essential for ontology re-use. We propose a definition of a module that guarantees to completely capture the meaning of a given set of terms, i.e., to include all axioms relevant to the meaning of these terms, and study the problem of extracting minimally sized modules. We show that the problem of determining whether a subset of an ontology is a module for a given vocabulary is undecidable even for rather restricted sub-languages of OWL DL. Hence we propose two "approximations", i.e., alternative definitions of modules for a vocabulary that still provide the above guarantee, but that are possibly too strict, and that may thus result in larger modules: the first approximation is semantic and can be checked using existing DL reasoners; the second is syntactic, and can be computed in polynomial time. Finally, we report on an empirical evaluation of our syntactic approximation that demonstrates that the modules we extract are surprisingly small.
Extracting modules from ontologies: A logic-based approach
2009
The ability to extract meaningful fragments from an ontology is essential for ontology reuse. We propose a definition of a module that guarantees to completely capture the meaning of a given set of terms, ie, to include all axioms relevant to the meaning of these terms. We show that the problem of determining whether a subset of an ontology is a module for a given vocabulary is undecidable even for OWL DL. Given these negative results, we propose sufficient conditions for a for a fragment of an ontology to be a module.
Modular Structures and Atomic Decomposition in Ontologies
Journal of Artificial Intelligence Research
With the growth of ontologies used in diverse application areas, the need for module extraction and modularisation techniques has risen. The notion of the modular structure of an ontology, which comprises a suitable set of base modules together with their logical dependencies, has the potential to help users and developers in comprehending, sharing, and maintaining an ontology. We have developed a new modular structure, called atomic decomposition (AD), which is based on modules that provide strong logical properties, such as locality-based modules. In this article, we present the theoretical foundations of AD, review its logical and computational properties, discuss its suitability as a modular structure, and report on an experimental evaluation of AD. In addition, we discuss the concept of a modular structure in ontology engineering and provide a survey of existing decomposition approaches.
T.: The modular structure of an ontology: an empirical study
2012
systems are desirable, all other things being equal. Given a well-designed modular program, it is generally easier to process, modify, and analyze it and to reuse parts by exploiting the modular structure. As a result, support for modules