Graphene Oxide Loaded with Protocatechuic Acid and Chlorogenic Acid Dual Drug Nanodelivery System for Human Hepatocellular Carcinoma Therapeutic Application (original) (raw)
Related papers
Materials, 2021
Liver cancer is listed as the fifth-ranked cancer, responsible for 9.1% of all cancer deaths globally due to its assertive nature and poor survival rate. To overcome this obstacle, efforts have been made to ensure effective cancer therapy via nanotechnology utilization. Recent studies have shown that functionalized graphene oxide (GO)-loaded protocatechuic acid has shown some anticancer activities in both passive and active targeting. The nanocomposites’ physicochemical characterizations were conducted. A lactate dehydrogenase experiment was conducted to estimate the severity of cell damage. Subsequently, a clonogenic assay was carried out to examine the colony-forming ability during long-term exposure of the nanocomposites. The Annexin V/ propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Following the intervention of nanocomposites, cell cycle arrest was ascertained at G2/M phase. There was depolarization of mitochondrial membrane potential...
International Journal of Molecular Sciences, 2020
The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites’ ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the...
Pharmaceutical Research, 2019
Background The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research. Methods In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors. Results The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells. Conclusion The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells. KEY WORDS anticancer. chlorogenic acid (CA). drug delivery. graphene oxide. nanobiomaterial. polyethylene glycol (PEG) and Protocatechuic acid (PCA)
Graphene Oxide–PEG–Protocatechuic Acid Nanocomposite Formulation with Improved Anticancer Properties
Nanomaterials, 2018
The treatment of cancer through chemotherapy is limited by its toxicity to healthy tissues and organs, and its inability to target the cancer site. In this study, we have designed an anticancer nanocomposite delivery system for protocatechuic acid (PCA) using graphene oxide–polyethylene glycol as the nanocarrier, and coated with folic acid (GO–PEG–PCA–FA) for targeting the cancer cells. The designed anticancer delivery system was found to show much better anticancer activity than the free drug PCA against liver cancer HEP-G2 cells and human colon cancer HT-29 cells; at same time, it was found to be less toxic to normal fibroblast 3T3 cells. The folate-coated anticancer delivery system was found to show better activity then the free drug and the uncoated anticancer delivery system. The in vitro release of the PCA was found to be sustained in human physiological pHs, i.e., blood pH 7.4 and intracellular lysosomal pH 4.8. These in vitro findings are highly encouraging for further in vi...
Materials
Inefficient drug administration into cancer cells is related to the chemoresistance of cancer cells caused by genetic mutations including genes involved in drug transport, enzyme metabolism, and/or DNA damage repair. The objective of the present study was to evaluate the properties of platinum (NP-Pt), graphene oxide (GO), and the nanocomplex of GO functionalized with platinum nanoparticles (GO-NP-Pt) against several genetically, phenotypically, and metabolically different cancer cell lines: Colo205, HT-29, HTC-116, SW480, HepG2, MCF-7, LNCaP, and Hela B. The anticancer effects toward the cancer cell lines were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) and bromodeoxyuridine (BrdU) assays and measurements of cell apoptosis and morphology deformations. The NP-Pt and GO could effectively be introduced to cancer cells, but more effective delivery was observed after GO-NP-Pt treatment. The delivery of the GO-NP-Pt nanocomplex signif...
Amination of Graphene Oxide Leads to Increased Cytotoxicity in Hepatocellular Carcinoma Cells
International Journal of Molecular Sciences
Clinically, there is an urgent need to identify new therapeutic strategies for selectively treating cancer cells. One of the directions in this research is the development of biocompatible therapeutics that selectively target cancer cells. Here, we show that novel aminated graphene oxide (haGO-NH2) nanoparticles demonstrate increased toxicity towards human hepatocellular cancer cells compared to pristine graphene oxide(GO). The applied novel strategy for amination leads to a decrease in the size of haGO-NH2 and their zeta potential, thus, assuring easier penetration through the cell membrane. After characterization of the biological activities of pristine and aminated GO, we have demonstrated strong cytotoxicity of haGO-NH2 toward hepatic cancer cells—HepG2 cell line, in a dose-dependent manner. We have presented evidence that the cytotoxic effects of haGO-NH2 on hepatic cancer cells were due to cell membrane damage, mitochondrial dysfunction and increased reactive oxygen species (R...
Asian Pacific journal of cancer prevention : APJCP, 2017
Background: Graphene nanosheets have a broad spectrum of biomedical applications. Hepatocellular cancer (HCC) is a major health problem in the Egyptian population. Currently, treatment strategies are invasive and have several adverse side effects. Thus, other approaches are required for managing this aggressive type of cancer. Our objective here was to prepare and characterize graphene oxide nanosheets and evaluate cytotoxic effect at the molecular level in an in vitro human liver cancer cell model (HepG2). Methods: Graphene oxide nanosheets were generated by chemical oxidation and characterized by transmission electron microscopy and X-ray diffraction. Cytotoxic effects in HepG2 cells were monitored by sulforhodamine B (SRB) colorimetric assay followed by flow cytometric analysis. Molecular investigations of DNA fragmentation and expression of some apoptotic genes at the transcriptional RNA level were also performed. Results: Treatment of HepG2 cells with 400μg/ml graphene oxide na...
Particle and fibre toxicology, 2013
Graphene and graphene derivative nanoplatelets represent a new generation of nanomaterials with unique physico-chemical properties and high potential for use in composite materials and biomedical devices. To date little is known about the impact graphene nanomaterials may have on human health in the case of accidental or intentional exposure. The objective of this study was to assess the cytotoxic potential of graphene nanoplatelets with different surface chemistry towards a human hepatoma cell line, Hep G2, and identify the underlying toxicity targets. Graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelet suspensions were obtained in water and culture medium. Size frequency distribution of the suspensions was determined by means of dynamic light scattering. Height, lateral dimension and shape of the nanoplatelets were determined using atomic force and electron microscopy. Cytotoxicity of GO and CXYG nanoplatelets was assessed in Hep G2 cells using a battery of assays coveri...
ACS Biomaterials Science & Engineering, 2018
Nanotechnology has acquired an immense recognition in cancer theranostic plethora. Considerable progress has been made in the development of targeted drug delivery system for potent delivery of anti-cancer drugs to tumour specific site. Recently multifunctional nanomaterials are being explored and used as nanovehicles to carry drug molecules with enhanced therapeutic efficacy. In this present work, graphene oxide quantum dot (GOQD) was conjugated with folic acid functionalized chitosan (FA-CH) to develop a nanocargo (FA-CH-GOQD) for drug delivery in cancer therapy. The synthesized nanomaterials were characterized using Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Photoluminescence spectroscopy (PL) was also employed to characterize the formation of GOQD. To validate the efficacy of FA-CH-GOQD as nanocarriers, doxorubicin (DOX) drug was chosen for encapsulation. The in-vitro release pattern of DOX was examined in various pH ranges. The drug release rate in a tumour cell microenvironment at pH 5.5 was found higher than that under a physiological range of pH 6.5 and 7.4. A MTT assay was performed to understand the cytotoxic behavior of GOQD and FA-CH-GOQD/DOX. Cytomorphological micrographs of the A549 cell exhibited the various morphological arrangements subject to apoptosis of the cell. Cellular uptake studies manifested that FA-CH-GOQD could specifically transport DOX within a cancerous cell. Further anti-cancer efficacy of this nanomaterial was corroborated in a breast cancer cell line and demonstrated through 4',6-diamidino-2phenylindole dihydrochloride (DAPI) staining micrographs.
Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells
Toxicology in Vitro, 2020
The evaluation of the cyto-and bio-compatibility is a critical step in the development of graphene oxide (GO) as a new promising material for in vivo biomedical applications. In this study, we report the impact of GO, with and without the addition of bovine serum albumin and anticancer drug-doxorubicin (DOX) on cancer (mouse hepatoma MH-22A) cells viability and the estimation of the intracellular distribution of GO inside the cells in vitro. The viability tests were performed using a colony formation assay. The intracellular distribution of GO was estimated using Raman spectroscopy and imaging. It was found that the functionalized GO with doxorubicin strengthens Doxorubicin, as anticancer drug effect. Therefore, it was revealed that a statistically significant result-the viability of MH-22A cells was approx. 20% lower than using DOX separately (from 57% to 79%, respectively). The results of viability tests correlate with results of atomic force microscopy and Raman spectroscopy and imaging findings.