Circular Permutation of Red Fluorescent Proteins (original) (raw)

Creation of Circularly Permutated Yellow Fluorescent Proteins Using Fluorescence Screening and a Tandem Fusion Template

Biotechnology Letters, 2006

By experimenting with many different circularly permutated yellow fluorescent protein (cpYFP) variants as acceptors in fluorescence resonance energy transfer based biosensors, the optimal dynamic range can be discovered by sampling the possibilities of relative fluorophore orientations before and after bioactivity. Hence, to facilitate the sampling process, we introduced a new approach to construct a library of cpYFP variants using fluorescence screening and a tandem fusion template. This new approach is rapid because it does not require creating intermediate N- and C-terminal fragments and it allows quick screening for positive colonies by fluorescence. As a demonstration, eleven cpYFP variants were created and eight showed fluorescence. The emission and excitation spectra of these cpYFP variants showed strong similarity to YFP and therefore can be used in replacement.

Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification

International Journal of Molecular Sciences, 2019

Genetically encoded biosensors based on fluorescent proteins (FPs) are a reliable tool for studying the various biological processes in living systems. The circular permutation of single FPs led to the development of an extensive class of biosensors that allow the monitoring of many intracellular events. In circularly permuted FPs (cpFPs), the original N- and C-termini are fused using a peptide linker, while new termini are formed near the chromophore. Such a structure imparts greater mobility to the FP than that of the native variant, allowing greater lability of the spectral characteristics. One of the common principles of creating genetically encoded biosensors is based on the integration of a cpFP into a flexible region of a sensory domain or between two interacting domains, which are selected according to certain characteristics. Conformational rearrangements of the sensory domain associated with ligand interaction or changes in the cellular parameter are transferred to the cpF...

Circular permutation and receptor insertion within green fluorescent proteins

Proceedings of the National Academy of Sciences, 1999

Many areas of biology and biotechnology have been revolutionized by the ability to label proteins genetically by fusion to the Aequorea green fluorescent protein (GFP). In previous fusions, the GFP has been treated as an indivisible entity, usually appended to the amino or carboxyl terminus of the host protein, occasionally inserted within the host sequence. The tightly interwoven, three-dimensional structure and intricate posttranslational self-modification required for chromophore formation would suggest that major rearrangements or insertions within GFP would prevent fluorescence. However, we now show that several rearrangements of GFPs, in which the amino and carboxyl portions are interchanged and rejoined with a short spacer connecting the original termini, still become fluorescent. These circular permutations have altered pKa values and orientations of the chromophore with respect to a fusion partner. Furthermore, certain locations within GFP tolerate insertion of entire prote...

Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides¶

Photochemistry and Photobiology, 2001

New variants of green fluorescent protein (GFP) can be engineered by circular permutation of their amino acid sequence. We characterized a series of permuted enhanced GFP (PEGFP) with new termini introduced at N144-Y145 and linkers of 1, 3, 5 and 6 residues inserted between G232 and M1, as well as a variant with an extended 7-residues linker between K238 and M1. A minimum linker length of 3 residues was necessary for a functional chromophore to be formed, and linkers exceeding 4 residues yielded almost the same fluorescence quantum yield as enhanced GFP (EGFP). PEGFP exhibited dual-wavelength absorption and fluorescence excitation with peaks at 395 and 490 nm but single-wavelength emission at 512 nm. Fluorescence emission increased with increasing pH for all excitation wavelengths with a pKa of 7.7. Between the pH values of 6 and 8 optical absorption showed an isobestic point at 445 nm. PEGFP rapidly denatured in urea between 50 and 60؇C. Renaturation proceeded with a short (ϳ29 s) and a longer (Ͼ150 s) time constant. Transient transfection of HEK293 and HeLa cells revealed the expression dynamics of PEGFP to be similar to that of EGFP. Laser-scanning microscopy of HeLa cells demonstrated that the PEGFP are particularly well suited as fluorescent indicators in two-photon imaging.

Circularly permuted variants of the green fluorescent protein

Febs Letters, 1999

Folding of the green fluorescent protein (GFP) from Aequorea victoria is characterized by autocatalytic formation of its p-hydroxybenzylideneimidazolidone chromophore, which is located in the center of an 11-stranded L L-barrel. We have analyzed the in vivo folding of 20 circularly permuted variants of GFP and find a relatively low tolerance towards disruption of the polypeptide chain by introduction of new termini. All permuted variants with termini in strands of the L L-barrel and about half of the variants with termini in loops lost the ability to form the chromophore. The thermal stability of the permuted GFPs with intact chromophore is very similar to that of the wild-type, indicating that chromophore-side chain interactions strongly contribute to the extraordinary stability of GFP.

Complementation and Reconstitution of Fluorescence from Circularly Permuted and Truncated Green Fluorescent Protein †

Biochemistry, 2009

Green fluorescent protein (GFP) has been used as a proof of concept for a novel "leave-one-out" biosensor design in which a protein that has a segment omitted from the middle of the sequence by circular permutation and truncation binds the missing peptide and reconstitutes its function. Three variants of GFP have been synthesized that are each missing one of the 11 β-strands from its βbarrel structure, and in two of the variants, adding the omitted peptide sequence in trans reconstitutes fluorescence. Detailed biochemical analysis indicates that GFP with β-strand 7 "left out" (t7SPm) exists in a partially unfolded state. The apo form t7SPm binds the free β-strand 7 peptide with a dissociation constant of ~0.5 µM and folds into the native state of GFP, resulting in fluorescence recovery. Folding of t7SPm, both with and without the peptide ligand, is at least a three-state process and has a rate comparable to that of the full-length and unpermuted GFP. The conserved kinetic properties strongly suggest that the rate-limiting steps in the folding pathway have not been altered by circular permutation and truncation in t7SPm. This study shows that structural and functional reconstitution of GFP can occur with a segment omitted from the middle of the chain, and that the unbound form is in a partially unfolded state. Removal of a segment from a protein chain is often disastrous to its folding and stability, but in many cases, it is possible to reconstitute the structure and function by adding back the complementary sequence as an autonomous peptide (1-9). Analogous to "leave-one-out" experiments in statistics, where data omitted from a training set is nonetheless accurately predicted by modeling the remaining data, the truncated sequence sometimes retains enough information about its native structure to form a specific binding pocket that is complementary to, and binds tightly to, the missing piece. If the reconstituted protein has a self-reporting signal such as fluorescence, then the leave-one-out protein is a sensor for its missing piece. In this study, we use green fluorescent protein (GFP) 1 to prove this concept.

Molecular mechanism of a green-shifted, pH-dependent red fluorescent protein mKate variant

PLoS ONE, 2011

Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies.

Triple-Decker Motif for Red-Shifted Fluorescent Protein Mutants

The Journal of Physical Chemistry Letters, 2013

Among fluorescent proteins (FPs) used as genetically encoded fluorescent tags, the red-emitting FPs are of particular importance as suitable markers for deep tissue imaging. Using electronic structure calculations, we predict a new structural motif for achieving red-shifted absorption and emission in FPs from the GFP family. By introducing four point mutations, we arrive to the structure with the conventional anionic GFP chromophore sandwiched between two tyrosine residues. Contrary to the existing red FPs in which the red shift is due to extended conjugation of the chromophore, in the triple-decker motif, the chromophore is unmodified and the red shift is due to π-stacking interactions. The absorption/emission energies of the triple-decker FP are 2.25/ 2.16 eV, respectively, which amounts to shifts of ∼40 (absorption) and ∼25 nm (emission) relative to the parent species, the I form of wtGFP. Using a different structural motif based on a smaller chromophore may help to improve optical output of red FPs by reducing losses due to radiationless relaxation and photobleaching.

Bimolecular fluorescence complementation based on the red fluorescent protein FusionRed

Russian Journal of Bioorganic Chemistry, 2016

The aim of this work is to construct split variants of the red fluorescent protein FusionRed, each of which consists of two separate polypeptides, nonfluorescent parts of FusionRed, that can form functional fluorescent proteins upon reassociation. At the first stage, various circularly permuted FusionRed variants have been created (in circular permutants the protein polypeptide chain is divided into two parts, which change places so that the C-terminal part is followed by the N-terminal part). Two variants with the highest rate of chromophore maturation (fluorescence development) have been selected out of 23 tested permutation points. These proteins called cpFR76-73 and cpFR189-188 (the first number indicates the last amino acid residue of the N-terminal part; the second number, the first residue of the C-terminal part) are spectrally similar to parental FusionRed but possess lower fluorescence quantum yields. Split variants corresponding to these two circular permutants have been tested in mammalian cells. For reassembly of the fluorescent protein fragments, heterodimerizing leucine zippers have been used. It has been shown that split variant FR189-188 matures at 37°C and possesses fluorescence brightness similar to that of FusionRed. Consequently, FR189-188 is potentially suitable for a wide range of applications, for example, the study of protein-protein interactions or visualization of cell populations, in which two target gene promoters are simultaneously active.

Directed molecular evolution to design advanced red fluorescent proteins

Nature Methods, 2011

Fluorescent proteins have become indispensable imaging tools for biomedical research. continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.