Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures (original) (raw)

Relevance of structural defects to the mechanism of mechanical deformation in metallic glasses

Scientific Reports

It is known that deformation in disordered materials such as metallic glasses and supercooled liquids occurs via the cooperative rearrangement of atoms or constituent particles at dynamical heterogeneities, commonly regarded as point-like defects. We show via molecular-dynamics simulations that there is no apparent relationship between atomic rearrangements and the local atomic environment as measured by the atomic-level stresses, kinetic and potential energies, and the per-atom Voronoi volume. In addition, there is only a weak correlation between atomic rearrangements and the largest and smallest eigenvalues of the dynamical matrix. Our results confirm the transient nature of dynamical heterogeneities and suggest that the notion of defects may be less relevant than that of a propensity for rearrangement.

Signature of local stress states in the deformation behavior of metallic glasses

NPG Asia Materials, 2020

The design of ductile heterogeneous metallic glasses (MGs) with enhanced deformability by purposely controlling the shear-band dynamics via modulation of the atomic-scale structures and local stress states remains a significant challenge. Here, we correlate the changes in the local atomic structure when cooling to cryogenic temperature with the observed improved shear stability. The enhanced atomic-level structural and elastic heterogeneities related to the nonaffine thermal contraction of the short-range order (SRO) and medium-range order (MRO) change the characteristics of the activation process of the shear transformation zones (STZs). The experimental observations corroborated by Eshelby inclusion analysis and molecular dynamics simulations disclose the correlation between the structural fluctuations and the change in the stress field around the STZ. The variations in the inclination axes of the STZs alter their percolation mechanism, affect the shear-band dynamics and kinetics,...

Molecular dynamics simulations of the mechanical annealing process in metallic glasses: Effects of strain amplitude and temperature

Journal of Non-crystalline Solids, 2018

Molecular dynamics simulations are performed to examine the dynamic response of amorphous solids to oscillatory shear at finite temperatures. The data were collected from a poorly annealed binary glass, which was deformed periodically in the elastic regime during several hundred shear cycles. We found that the characteristic time required to reach a steady state with a minimum potential energy is longer at higher temperatures and larger strain amplitudes. With decreasing strain amplitude, the asymptotic value of the potential energy increases but it remains lower than in quiescent samples. The transient decay of the potential energy correlates well with a gradual decrease in the volume occupied by atoms with large nonaffine displacements. By contrast, the maximum amplitude of shear stress oscillations is attained relatively quickly when a large part of the system starts to deform reversibly.

How thermally activated deformation starts in metallic glass

Nature Communications, 2014

The studies on dynamics and deformation in glassy materials are particularly challenging because of their strongly disordered atomic structure. Here, by probing the changes in the atomic displacements and stresses at saddle points of the potential energy landscape, we show that thermally activated deformation is triggered by subnano-scale rearrangements of a small number of atoms, typically less than 10 atoms. The individual triggers are invariant of the cooling history or elastic structure of the system. However, the organizations between different trigger centres can be varied and are related to the overall stability of the system. This finding allows a semi-quantitative construction of the potential energy landscape and brings a new perspective to the study of the mechanical properties of glasses.

Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations

Physical Review B, 2011

In this study, we characterize the mechanical properties of Cu 64 Zr 36 nanoglasses under tensile load by means of large-scale molecular dynamics simulations and compare the deformation behavior to the case of a homogeneous bulk glass. The simulations reveal that interfaces act as precursors for the formation of multiple shear bands. In contrast, a bulk metallic glass under uniaxial tension shows inhomogeneous plastic flow confined in one dominant shear band. The results suggest that controlling the microstructure of a nanoglass can pave the way for tuning the mechanical properties of glassy materials.

Mechanisms of bulk and surface diffusion in metallic glasses determined from molecular dynamics simulations

Acta Materialia, 2021

The bulk and surface dynamics of Cu50Zr50 metallic glass were studied using classical molecular dynamics (MD) simulations. As the alloy undergoes cooling, it passes through liquid, supercooled, and glassy states. While bulk dynamics showed a marked slowing down prior to glass formation, with increasing activation energy, the slowdown in surface dynamics was relatively subtle. The surface exhibited a lower glass transition temperature than the bulk, and the dynamics preceding the transition were accurately described by a temperature-independent activation energy. Surface dynamics were much faster than bulk at a given temperature in the supercooled state, but surface and bulk dynamics were found to be very similar when compared at their respective glass transition temperatures. The manifestation of dynamical heterogeneity, as characterized by the non-Gaussian parameter and breakdown of the Stokes-Einstein equation, was also similar between bulk and surface for temperatures scaled by their respective glass transition temperatures. Individual atom motion was dominated by a cage and jump mechanism in the glassy state for both the bulk and surface. We utilize this cage and jump mechanisms to separate the activation energy for diffusion into two parts: (i) cage-breaking barrier (Q1), associated with the rearrangement of neighboring atoms to free up space and (ii) the subsequent jump barrier (Q2). It was observed that Q1 dominates Q2 for both bulk and surface diffusion, and the difference in activation energies for bulk and surface diffusion mainly arose from the differences in cage-breaking barrier Q1.

Reformation Capability of Short-Range Order and Their Medium-Range Connections Regulates Deformability of Bulk Metallic Glasses

Scientific reports, 2015

Metallic glasses (MGs) typically have high yield strength while low ductility, and the latter is commonly considered as the Achilles' heel of MGs. Elucidate the mechanism for such low ductility becomes the research focus of this field. With molecular level simulations, we show the degree of short-range order (SRO) of atomic structure for brittle Fe-based glass decreases dramatically during the stretch, while mild change occurs in ductile Zr-based glass. The reformation capability for SRO and their medium-range connections is found to be the primary characteristics to differentiate the deformability between the two metallic glasses. We suspect that, in addition to the strength of networks formed by SRO structure, the reformation capability to reform SRO networks also plays the key role in regulating the ductility in metallic glasses. Our study provides important insights into the understanding about the mechanisms accounting for ductility or brittleness of bulk metallic glasses.

Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding

International Journal of Plasticity, 2019

Structural heterogeneities in monolithic metallic glasses, i.e. free volume variations or stress/strain fields, are known to be pivotal for their plasticity but the mechanisms how they affect irreversible deformation remain poorly understood. We show that flash-annealing is a capable tool for modifying the free volume content and its distribution, which creates non-affine stress fields in a monolithic CuZr-based bulk metallic glass. Rather than the overall free volume, µm-scale regions of relaxed and rejuvenated glass govern plastic deformation. Complementary molecular dynamics simulations underpin the importance of the interfaces between relaxed and rejuvenated volumes for shear band proliferation. Not only can we reach unmatched states of metastability in metallic glasses with the present approach but also better understand the mechanisms underlying plasticity in monolithic but structurally heterogeneous metallic glasses.