Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS) (original) (raw)

The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

Environmental Science & Technology, 2008

This study examined the effect of solvent on the analysis of organic aerosol extracts using electrospray ionization mass spectrometry (ESI-MS). Secondary organic aerosol (SOA) produced by ozonation of d-limonene, as well as several organic molecules with functional groups typical for OA constituents, were extracted in methanol, d 3 -methanol, acetonitrile, and d 3acetonitrile to investigate the extent and relative rates of reactions between analyte and solvent. High resolution ESI-MS showed that reactions of carbonyls with methanol produce significant amounts of hemiacetals and acetals on time scales ranging from several minutes to several days, with the reaction rates increasing in acidified solutions. Carboxylic acid groups were observed to react with methanol resulting in the formation of esters. In contrast, acetonitrile extracts showed no evidence of reactions with analyte molecules, suggesting that acetonitrile is the preferred solvent for SOA extraction. The use of solvent-analyte reactivity as a tool for the improved characterization of functional groups in complex organic mixtures was demonstrated. Direct comparison between mass spectra of the same SOA samples extracted in methanol versus acetonitrile was used to estimate the lower limits for the relative fractions of carbonyls (g42%) and carboxylic acids (g55%) in d-limonene SOA.

Mass Spectrometric Analysis of Organic Aerosol Composition: Laboratory and Ambient

2012

Organic compounds contribute a significant mass fraction of ambient aerosol and play a role in determining the physiochemical properties of ambient aerosol. A significant fraction of organic aerosol is secondary organic aerosol (SOA), which is produced when the volatile organic compounds (VOCs) originated from various anthropogenic and biogenic sources react with atmospheric oxidants such as ozone, hydroxyl radicals, and nitrate radicals to form lower volatility organic compounds, which subsequently partition into the particle phase. Understanding the composition of ambient aerosol is crucial for identifying their sources and formation mechanisms and predicting their properties and effects on various ambient processes. This thesis focuses on investigating the composition of laboratory–generated SOA formed from the oxidation of biogenic VOCs of atmospheric importance (isoprene and β–caryophyllene) and ambient aerosol collected in the field campaigns using advanced mass spectrometric ...

High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

Analytical Chemistry, 2010

Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of organic aerosol (OA) samples collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. In this study, DESI-MS and tandem mass spectrometry experiments (MS/MS) were used to examine chemical aging of SOA produced by the ozonolysis of limonene (LSOA) in the presence of gaseous ammonia. Exposure of LSOA to ammonia resulted in measurable changes in the optical properties of the sample observed using ultraviolet (UV)-visible spectroscopy. High-resolution DESI-MS analysis demonstrated that chemical aging results in formation of highly conjugated nitrogen-containing species that are most likely responsible for light-absorbing properties of the aged LSOA. Detailed analysis of the experimental data allowed us to identify several key aging reactions, including the transformation of carbonyls to imines, intramolecular dimerization of imines with other carbonyl compounds in SOA, and intermolecular cyclization of imines. This study presents an important step toward understanding the formation of lightabsorbing OA (brown carbon) in the atmosphere.

Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol

Atmospheric Measurement Techniques, 2021

We deployed an extractive electrospray ionization time-of-flight mass spectrometer (EESI-MS) for airborne measurements of biomass burning aerosol during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) study onboard the NASA DC-8 research aircraft. Through optimization of the electrospray working solution, active control of the electrospray region pressure, and precise control of electrospray capillary position, we achieved 1 Hz quantitative measurements of aerosol nitrocatechol and levoglucosan concentrations up to pressure altitudes of 7 km. The EESI-MS response to levoglucosan and nitrocatechol was calibrated for each flight, with flight-toflight calibration variability of 60 % (1σ). Laboratory measurements showed no aerosol size dependence in EESI-MS sensitivity below particle geometric diameters of 400 nm, covering 82 % of accumulation-mode aerosol mass during FIREX-AQ. We also present a first in-field intercomparison of EESI-MS with a chemical analysis of aerosol online proton-transfer-reaction mass spectrometer (CHARON PTR-MS) and a high-resolution Aerodyne aerosol mass spectrometer (AMS). EESI-MS and CHARON PTR-MS levoglucosan concentrations were well correlated, with a regression slope of 0.94 (R 2 = 0.77). AMS levoglucosan-equivalent concentrations and EESI-MS levoglucosan showed a greater difference, with a regression slope of 1.36 (R 2 = 0.96), likely indicating the contribution of other compounds to the AMS levoglucosan-equivalent measurement. The total EESI-MS signal showed correlation (R 2 = 0.9) with total organic aerosol measured by AMS, and the EESI-MS bulk organic Published by Copernicus Publications on behalf of the European Geosciences Union. 1546 D. Pagonis et al.: Airborne extractive electrospray mass spectrometry aerosol sensitivity was 60 % of the sensitivity to levoglucosan standards.

Near-Infrared Laser Desorption/Ionization Aerosol Mass Spectrometry for Investigating Primary and Secondary Organic Aerosols under Low Loading Conditions †

Analytical Chemistry, 2010

A new method, near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS), is described for the real time analysis of organic aerosols at atmospherically relevant mass loadings. Use of a single NIR laser pulse to vaporize and ionize particle components deposited on an aluminum probe results in minimal fragmentation to produce exclusively intact pseudomolecular anions at [M-H]-. Limits of detection (total particulate mass sampled) for oxidized compounds of relevance to atmospheric primary and secondary organic aerosol range from 89 fg for pinic acid to 8.8 pg for cholesterol. NIR-LDI-AMS was used in conjunction with the University of Vermont Environmental Chamber to study secondary organic aerosol (SOA) formation from ozonolysis of limonene at total aerosol mass loadings ranging from 3.2 to 25.0 µg m-3 and with a time resolution of several minutes. NIR-LDI-AMS permitted direct delineation between gas-phase, homogeneous SOA formation and subsequent heterogeneous aerosol processing by ozone. Aerosols are of central importance in the atmosphere where they can influence climate, visibility, trace gas levels, and health. 1-3 Organic aerosols (OA) make a significant contribution to the total mass of fine aerosols (i.e., PM 2.5), contributing ∼20-50% at continental midlatitudes and up to 90% in tropical forested areas. 1 OA may be broadly categorized as primary or secondary (i.e., POA and SOA, respectively). POA is directly emitted into the atmosphere from a source, whereas SOA is formed in the atmosphere via oxidation of volatile organic compounds (VOCs). At present, there exists a disparity between modeled SOA fluxes and concentrations and those measured in the field. Traditional "bottom-up" estimates that combine VOC fluxes with † Part of the special issue "Atmospheric Analysis as Related to Climate Change".

Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass Spectrometry †

Analytical Chemistry, 2010

Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry (HR-MS) is a promising approach for the detailed, molecular-level chemical characterization of atmospheric organic aerosols (OA) collected in laboratory and field experiments. The nano-DESI technique possesses distinct advantages of technical simplicity, enhanced sensitivity, and signal stability. In nano-DESI, analyte is desorbed into a solvent bridge formed between two capillaries and the analysis surface, which enables fast and efficient characterization of OA collected on substrates without sample preparation. Stable signals achieved using nano-DESI make it possible to obtain high-quality HR-MS data both for laboratory-generated and field-collected OA using only a small amount of material (<10 ng). Furthermore, nano-DESI enables the efficient detection of chemically labile compounds in OA, which is important for understanding chemical aging phenomena.

New insights into secondary organic aerosol from the ozonolysis of α-pinene from combined infrared spectroscopy and mass spectrometry measurements

Physical chemistry chemical physics : PCCP, 2014

Understanding mechanisms of formation, growth and physical properties of secondary organic aerosol (SOA) is central to predicting impacts on visibility, health and climate. It has been known for many decades that the oxidation of monoterpenes by ozone in the gas phase readily forms particles. However, the species responsible for the initial nucleation and the subsequent growth are not well established. Recent studies point to high molecular weight highly oxygenated products with extremely low vapor pressures (ELVOC, extremely low volatility organic compounds) as being responsible for the initial nucleation, with more volatile species contributing to particle growth. We report here the results of studies of SOA formed in the ozonolysis of α-pinene in air at 297 ± 2 K using atmospheric solids analysis probe (ASAP) mass spectrometry, attenuated total reflectance (ATR) Fourier transform infrared spectrometry and proton transfer reaction (PTR) mass spectrometry. Smaller particles are sho...

Investigation of primary and secondary organic aerosols by advanced mass spectrometric techniques and chemometric approaches

2017

In this thesis, changing emissions of small-scale wood combustion appliances and ship engines driven by advances in combustion technology and fuel shifts from new legislation were investigated. Firstly, modern masonry heaters and pellet boilers cover emission profiles distinctly different from conventional stoves, which complicates their identification in source apportionment studies. For ship engines, new organic markers, independently from fuel use, for the identification of ships emissions in ambient air were proposed from statistical analyses of several real-world combustion emissions.

Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry

Physical Chemistry Chemical Physics, 2009

Molecular composition of limonene/O 3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100 000 (m/Dm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O : C ratios, double bond equivalency (DBE) factors, and aromaticity index (AI) values in hundreds of identified individual SOA species. The chemical composition of SOA was approximately the same for all size-fractionated samples studied in this experiment (0.05 to 0.5 mm range). The SOA constituents quickly reached an average O : C ratio of 0.43, which grew to 0.46 after one hour of additional oxidation of particles by the excess ozone. The dominant mechanism of oligomerization, inferred from high resolution ESI-MS data, was reaction between Criegee intermediates and stable first-generation products of limonene ozonolysis. Although the SOA composition was dominated by various oxidized aliphatic compounds, a small fraction of products appeared to contain aromatic rings. SOA generation was also studied in the presence of UV radiation and at elevated relative humidity (RH). The presence of UV radiation had a negligible effect on the SOA composition. The presence of water vapor resulted in a slight redistribution of peak intensities in the mass spectrum likely arising from hydration of certain SOA constituents. The data are consistent with fast production of the first-generation SOA constituents, including oligomers, followed by very slow aging processes that have a relatively small effect on the average molecular composition on the timescale of our experiments.

A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

Atmospheric Chemistry and Physics, 2012

Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM 1 (particulate matter with an aerodynamic diameter d a < 1 µm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene.