A yeast-based genetic screen for identification of pathogenic Salmonellaâ proteins (original) (raw)
Related papers
Identification of New Secreted Effectors in Salmonella enterica Serovar Typhimurium
Infection and Immunity, 2005
A common theme in bacterial pathogenesis is the secretion of bacterial products that modify cellular functions to overcome host defenses. Gram-negative bacterial pathogens use type III secretion systems (TTSSs) to inject effector proteins into host cells. The genes encoding the structural components of the type III secretion apparatus are conserved among bacterial species and can be identified by sequence homology. In contrast, the sequences of secreted effector proteins are less conserved and are therefore difficult to identify. A strategy was developed to identify virulence factors secreted by Salmonella enterica serovar Typhimurium into the host cell cytoplasm. We constructed a transposon, which we refer to as mini-Tn 5 -cycler, to generate translational fusions between Salmonella chromosomal genes and a fragment of the calmodulin-dependent adenylate cyclase gene derived from Bordetella pertussis ( cyaA ′). In-frame fusions to bacterial proteins that are secreted into the eukaryo...
Molecular Microbiology, 2000
Salmonella species translocate effector proteins into the host cell cytoplasm using a type III secretion system (TTSS). The translocation machinery probably contacts the eukaryotic cell plasma membrane to effect protein transfer. Data presented here demonstrate that both SspB and SspC, components of the translocation apparatus, are inserted into the epithelial cell plasma membrane 15 min after Salmonella typhimurium infection. In addition, a yeast two-hybrid interaction between SspC and an eukaryotic intermediate filament protein was identified. Three individual carboxyl-terminal point mutations within SspC that disrupt the yeast two-hybrid interaction were isolated. Strains expressing the mutant SspC alleles were defective for invasion, translocation of effector molecules and membrane localization of SspC. These data indicate that insertion of SspC into the plasma membrane of target cells is required for invasion and effector molecule translocation and that the carboxyl terminus of SspC is essential for these functions.
BMC microbiology, 2007
The type III secretion system (TTSS) is an important virulence determinant of Gram-negative bacterial pathogens. It enables the injection of effector proteins into the cytosol of eukaryotic cells. These effectors ultimately manipulate the cellular functions of the infected organism. Salmonella enterica serovar Typhimurium encodes two virulence associated TTSSs encoded by the Salmonella Pathogenicity Islands (SPI) 1 and 2 that are required for the intestinal and systemic phases of the infection, respectively. However, recent studies suggest that the roles of these TTSSs are not restricted to these compartments. The regulation of TTSSs in Salmonella is very complex with several regulators operating to activate or to repress expression depending on the environmental conditions. We performed a systematic analysis of the regulation of type III effectors during growth in vitro. We have tested the ability of seven regulatory genes to regulate ten effector genes. Each regulator was expresse...
Infection and Immunity, 2001
Survival of Salmonella enterica serovar Typhimurium within host phagocytic cells is a critical step in establishing systemic infection in mice. Genes within Salmonella pathogenicity island 2 (SPI-2) encode a type III secretion system that is required for establishment of systemic infection. Several proteins encoded by SPI-2 have homology to type III secreted proteins from enteropathogenic Escherichia coli and Yersinia and, based on that homology, are predicted to be secreted through the SPI-2 type III secretion system. We have investigated the roles of two of these proteins, SseC and SseD. We demonstrate here that the SseD protein is required for systemic Salmonella infection of the mouse, and we confirmed the virulence requirement for the SseC protein. Experiments were performed, using cellular fractionation and immunoblotting, to identify the subcellular location of the SseC and SseD proteins. Both proteins were found to localize predominantly to the bacterial cell membrane. In ad...
PLoS ONE, 2012
During intracellular life, the bacterial pathogen Salmonella enterica translocates a complex cocktail of effector proteins by means of the SPI2-encoded type III secretions system. The effectors jointly modify the endosomal system and vesicular transport in host cells. SseF and SseG are two effectors encoded by genes within Salmonella Pathogenicity Island 2 and both effector associate with endosomal membranes and microtubules and are involved in the formation of Salmonella-induced filaments. Our previous deletional analyses identified protein domains of SseF required for the effector function. Here we present a detailed mutational analysis that identifies a short hydrophobic motif as functionally essential. We demonstrate that SseF and SseG are still functional if translocated as a single fusion protein, but also mediate effector function if translocated in cells co-infected with sseF and sseG strains. SseF has characteristics of an integral membrane protein after translocation into host cells.
Infection and Immunity, 2011
Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (⌬ssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ⌬ssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.
SseK1 and SseK2 Are Novel Translocated Proteins of Salmonella enterica Serovar Typhimurium
Infection and Immunity, 2004
Salmonella enterica is a gram-negative, facultative intracellular pathogen that causes disease symptoms ranging from gastroenteritis to typhoid fever. A key virulence strategy is the translocation of bacterial effector proteins into the host cell, mediated by the type III secretion systems (TTSSs) encoded in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. In S. enterica serovar Typhimurium LT2, we identified the protein products of STM4157 and STM2137 as novel candidate secreted proteins by comparison to known secreted proteins from enterohemorrhagic Escherichia coli and Citrobacter rodentium. The STM4157 and STM2137 proteins, which we have designated SseK1 and SseK2, respectively, are 61% identical at the amino acid level and differ mainly in their N termini. Western analysis showed that in vitro accumulation and secretion of these proteins in serovar Typhimurium were affected by mutations in the two-component systems SsrA/B and PhoP/Q, which are key mediators of intracellular growth and survival. SPI-2 TTSS-dependent translocation of recombinant SseK1:: Cya was evident at 9 h postinfection of epithelial cells, while translocation of SseK2::Cya was not detected until 21 h. Remarkably, the translocation signal for SseK1 was contained within the N-terminal 32 amino acids. Fractionation of infected epithelial cells revealed that following translocation SseK1 localizes to the host cytosol, which is unusual among the currently known Salmonella effectors. Phenotypic analysis of ⌬sseK1, ⌬sseK2, and ⌬sseK1/⌬sseK2 mutants provided evidence for a role that was not critical during systemic infection. In summary, this work demonstrates that SseK1 and SseK2 are novel translocated proteins of serovar Typhimurium.
Molecular Microbiology, 1998
The type III secretion system of Salmonella pathogenicity island 2 (SPI‐2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI‐2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying non‐polar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence...
Salmonella is a causative agent of wide range of diseases varying from gastroenteritis to systemic typhoid fever. It uses specialized Type III secretion system (T3SS) by its two compartments to invade and intracellularly survive inside the immune cells. T3SS is expressed in two subsequent phases by two distinct Salmonella pathogenicity islands (SP) I and II. Understanding and evaluation of components T3SS-SPI1 and T3SS-SPI2 are very important, not only to evaluate the bacterial virulence but also to develop vaccines. In this study, the effect of mutation on SsaV encoding gene (one of the essential T3SS-SPI2 components) was investigated on the virulence behavior of Salmonella enterica serovar Typhimurium. We found a significant reduction in invasion capability and intracellular replication as well.