Evaluation of physicochemical, textural, mineral and protein characteristics of kidney bean grown at Himalayan region (original) (raw)

Abstract

Different kidney bean lines (48) were evaluated for diversity in seed (physicochemical, hydration, textural and cooking) and flour (antioxidant, total phenols, minerals, protein and pasting) properties. All the lines showed significant differential accumulation of minerals i.e. Fe, Mn, Cu, Na, Zn, K, Mg and Ca. Mn content was correlated with L* and b* values while Ca and Mg contents were correlated antioxidant potential relative to the phenolic content. Antioxidant activity (AOA) was measured using 2,2-diphenylpicrylhydrazine (DPPH) antioxidant assay and total phenolic content (TPC) was measured using Folin-Ciocalteu assay. AOA and TPC ranged from 2.14 to 94.24% of DPPH inhibition and 0.07 to 7.10 mg GAE/g, respectively. Light grain lines with lower L* had lower AOA and TPC as compared to the darker grain lines with higher L*. SDS-PAGE analysis showed the presence of 26 major polypeptides ranged from 12 to 137 kDa and among them, eight polypeptides were subjected to MALDI-TOF/MS analysis. These polypeptides were identified as phaseolin (alpha-type precursor) of 200 kDa, legumin (Phaseolus vulgaris) of 86 kDa, methionine synthase (Glycine max) of 84 kDa, 5-methyltetrahydropteroyltriglutamate-homocysteineSmethyltransferase, putative (Ricinus communis) of 80 kDa, chain A purple acid phosphatase of 59 kDa, IAAprotein conjugate (P. vulgaris) of 39 kDa and lectin (P. vulgaris) of 36 kDa. It has been observed that most of the lines which show the presence of 59 kDa protein also showed the presence of high activity of antioxidant.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (52)

  1. differ significantly (p ≤ 0.05). References AOAC (1990). Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists.
  2. Barampama, Z., & Simard, R. E. (1995). Effects of soaking, cooking and fermentation on composition, in vitro starch digestibility and nutritive value of common beans. Plant Foods in Human Nutrition, 48(4), 349-365.
  3. Beninger, C. W., & Hosfield, G. L. (2003). Antioxidant activity extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51, 7879-7883.
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  5. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT -Food Science and Technology, 28(1), 25-30.
  6. N. Parmar et al. / Food Research International 66 (2014) 45-57
  7. Cardador-Martinez, A., Loacra-Pina, G., & Oomah, B.D. (2002). Antioxidant activity in com- mon beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 50, 6975-6980.
  8. Deshpande, S. S., Sathe, S. K., & Salunkhe, D. K. (1984). Interrelationships between certain physical and chemical properties of dry bean (Phaseolus vulgaris L.). Plant Foods for Human Nutrition, 34, 53-65.
  9. Emani, C., & Hall, T. C. (2008). Phaseolin: Structure and evolution. The Open Evolution Journal, 2, 66-74.
  10. FAO (2002). Food and Agriculture Organization of the United Nations. Available from. Rome, Italy: FAOSTAT statistics database-agriculture.
  11. Grusak, M.A. (2002). Enhancing mineral content in plant food products. The Journal of the American College of Nutrition, 21, 178-183.
  12. Guajardo-Flores, Daniel, Serna-Saldívar, Sergio O., & Gutiérrez-Uribe, Janet A. (2013). Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chemistry, 141(2), 1497-1503.
  13. Heimler, D., Vignolini, P., Dini, M. G., & Romani, A. (2005). Rapid tests to assess the anti- oxidant activity of Phaseolus vulgaris L. dry beans. Journal of Agricultural and Food Chemistry, 53, 3053-3056.
  14. House, W. A., Welch, R. M., Beebe, S., & Cheng, Z. (2002). Potential for increasing the amounts of bioavailable zinc in dry beans (Phaseolus vulgaris L) through plant breed- ing. Journal of the Science of Food and Agriculture, 82(13), 1452-1457.
  15. Kaida, R., Serada, S., Norioka, N., Norioka, S., Neumetzler, L., Pauly, M., et al. (2010). Poten- tial role for purple acid phosphatase in the dephosphorylation of wall proteins in to- bacco cells. Plant Physiology, 153, 603-610.
  16. Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different Chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403-411.
  17. Kaur, M., & Singh, N. (2007). A comparison between the properties of seed, starch, flour and protein separated from chemically hardened and normal kidney beans. Journal of the Science of Food and Agriculture, 87(4), 729-737.
  18. Kaur, S., Singh, N., Sodhi, N. S., & Rana, J. C. (2009). Diversity in properties of seed and flour of kidney bean germplasm. Food Chemistry, 117, 282-289.
  19. Koistinen, K. M., Hassinen, V. H., Gynther, P. A. M., Lehesranta, S. J., Keinanen, S. I., Kokko, H. I., et al. (2002). Birch PR-10c is induced by factors causing oxidative stress but ap- pears not to confer tolerance to these agents. New Phytologist, 155, 381-391.
  20. Kutos, T., Golob, T., Kac, M., & Plestenjak, A. (2002). Dietary fiber of dry processed beans. Food Chemistry, 80, 231-235.
  21. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 227, 680-685.
  22. Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., et al. (2002). Purple Acid Phospha- tases of Arabidopsis thaliana. The Journal of Biological Chemistry, 277(31), 27772-27781.
  23. Limpisut, P., & Jindal, V. K. (2002). Comparison of rice flour pasting properties using brabendervisco-amylograph and rapid visco-analyzer for evaluating cooked rice tex- ture. Starch-Starke, 54, 350-357.
  24. Liu, B., Peng, J., Zhang, S., Zou, B., & Zhong, G. (2013). Chemical composition, in vitro starch digestibility and amino acid analysis of a underexplored kidney bean (Phaseolus vulgaris. L.) grown in Chongqing, China. International Journal of Food Science and Technology, 48, 527-532.
  25. Madhujith, T., Naczk, M., & Shahidi, F. (2004). Antioxidant activity of common beans (Phaseolus vulgaris L.). Journal of Food Lipids, 11, 220-233.
  26. Montoya, C. A., Lallès, J. -P., Beebe, S., & Leterme, P. (2010). Phaseolin diversity as a possi- ble strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Research International, 43, 443-449.
  27. Muller, F. M. (1967). Cooking quality of pulses. Journal of the Science of Food and Agriculture, 18, 292-295.
  28. Oomah, B. D., Tiger, N., Olson, M., & Balasubramanian, P. (2006). Phenolics and antioxidatives activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods in Human Nutrition, 61, 91-97.
  29. Oomah, B. D., Blanchard, C., & Balasubramanian, P. (2008). Phytic acid, phytase, minerals, and antioxidant activity in canadian dry bean (Phaseolus vulgaris) cultivars. Journal of Agriculture and Food Chemistry, 56(23), 11312-11319.
  30. Rehman, Z., Salariya, A.M., & Zafar, S. I. (2001). Effect of processing on available carbohy- drate content and starch digestibility of kidney beans (Phaseolus vulgaris L.). Food Chemistry, 73, 351-353.
  31. Robinson, W. D., Park, J., Tran, H. T., Del Vecchio, H. A., Ying, S., Zins, J. L., et al. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a piv- otal role in extracellular phosphate-scavenging by Arabidopsis thaliana63(18), 6531-6542.
  32. Rocha-Guzman, N. E., Gallegos-Infante, J. A., Gonzalez-Laredo, R. F., Cardoza-Cervantes, V., Reynoso-Camacho, R., Ramos-Gomez, M., et al. (2013). Evaluation of culinary quality and antioxidant capacity for Mexican common beans (Phaseolus vulgaris L.) canned in pilot plant. International Food Research Journal, 20(3), 1087-1093.
  33. Rockland, L. B., & Jones, F. T. (1974). Scanning electron microscope study on dry beans. Ef- fect of cooking on cellular structure of cotyledons in rehydrated lima beans. Journal of Food Science, 39, 342-346.
  34. Rodhouse, J. C., Haugh, C. A., Roberts, D., & Gilbert, R. J. (1990). Red kidney bean poisoning in the UK: An analysis of 50 suspected incidents between 1976 and 1989. Epidemiology & Infection, 105(3), 485-491.
  35. Sandhu, K. S., Singh, N., & Malhi, N. S. (2007). Some properties of corn grains and their flours I: Physicochemical, functional and chapatti-making properties of flours. Food Chemistry, 101, 938-946.
  36. Sathe, S. K. (2002). Dry bean protein functionality. Critical Reviews in Biotechnology, 22, 175-223.
  37. Schenk, G., Mitic, N., Hanson, G. R., & Comba, P. (2013). Purple acid phosphatase: A jour- ney into the function and mechanism of a colorful enzyme. Coordination Chemistry Reviews, 257, 473-482.
  38. Seena, S., & Sridhar, K. R. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38, 803-814.
  39. SefaDedah, S., & Stanley, D. W. (1979). Textural implications of the microstructure of le- gumes. Food Technology, 33, 77-83.
  40. Shimelis, E., Meaza, M., & Rakshit, S. K. (2006). Physico-chemical properties, pasting be- havior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agricultural Engineering International: The CIGR Ejournal, VIII (FP 05 015).
  41. Singh, N., Kaur, S., Rana, J. C., Nakaura, Y., & Inouchic, N. (2012). Isoamylase debranched fractions and granule size in starches from kidney bean germplasm: Distribution and relationship with functional properties. Food Research International, 2(47), 174-181.
  42. Singh, N., Kaur, M., Sandhu, K. S., & Sodhi, N. S. (2004). Physicochemical, cooking and tex- tural characteristics of some Indian black gram varieties (Phaseolus mungo L.). Journal of the Science of Food and Agriculture, 84, 977-982.
  43. Singh, N., Sekhon, K. S., Bajwa, U., & Gopal, S. (1992). Cooking and parching characteristics of chick pea (Cicer arietinum L.). Journal of Food Science and Technology, 29(34), 7-350.
  44. Singh, S., Singh, N., & MacRitchie, F. (2011). Relationship of polymeric proteins with past- ing, gel dynamic-and dough empirical-rheology in different Indian wheat varieties. Food Hydrocolloids, 25, 19-24.
  45. Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes: A boon to human nutri- tion. Trends in Food Science and Technology, 14, 507-518.
  46. Tiwari, B. K., & Singh, N. (2012). United Kingdom: The Royal Society of Chemistry. Pulse chemistry and technology.
  47. Walz, A., Seidel, C., Rusak, G., Park, S., Cohen, J.D., & Ludwig-Müller, J. (2008). Heterolo- gous expression of IAP1, a seed protein from bean modified by indole-3-acetic acid, in Arabidopsis thaliana and Medicago truncatula. Planta, 227(5), 1047-1061.
  48. Wang, T. L., Domoney, C., Hedley, C. L., Casey, R., & Grusak, M.A. (2003). Can we improve the nutritional quality of legume seeds? Plant Physiology, 131, 886-891.
  49. Williams, P. C., Nakul, H., & Singh, K. B. (1983). Relationship between cooking time and some physical characteristics in chickpea (Cicer arietinum L.). Journal of the Science of Food and Agriculture, 34, 492-496.
  50. Xu, B. J., Yuan, S. H., & Chang, S. K. C. (2007). Comparative studies on the antioxidant ac- tivities of nine common food legumes against copper-induced human low-density li- poprotein oxidation in vitro. Journal of Food Science, 72(7), S522-S527.
  51. Yin, F., Pajak, A., Chapman, R., Sharpe, A., Huang, S., & Marsolais, F. (2011). Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics, 12, 268-271.
  52. Yu, L., Halley, S., Perret, J., Harris, M., Wilson, J., & Qian, M. (2002). Free radical scavenging properties of wheat extracts. Journal of Food Chemistry, 50, 1619-1624.